
Towards Feature-Aware Retrieval of Refinement
Traces

Patrick Rempel, Patrick Mäder, and Tobias Kuschke
Ilmenau Technical University

Department of Software Systems
Ilmenau, Gernany

{patrick.rempel|patrick.maeder|tobias.kuschke}@tu-ilmenau.de

Abstract—Requirements traceability supports practitioners in
reaching higher project maturity and better product quality. To
gain this support, traces between various artifacts of the software
development process are required. Depending on the number of
existing artifacts, establishing traces can be a time-consuming
and error-prone task. Additionally, the manual creation of
traces frequently interrupts the software development process.
In order to overcome those problems, practitioners are asking
for techniques that support the creation of traces (see Grand
Challenge: Ubiquitous (GC-U)). In this paper, we propose the
usage of a graph clustering algorithm to support the retrieval
of refinement traces. Refinement traces are traces that exist
between artifacts created in different phases of a development
project, e.g., between features and use cases. We assessed the
effectiveness of our approach in several TraceLab experiments.
These experiments employ three standard datasets containing
differing types of refinement traces. Results show that graph
clustering can improve the retrieval of refinement traces and is
a step towards the overall goal of ubiquitous traceability.

Index Terms—requirements traceability; graph clustering;
trace retrieval; TraceLab experiment; ubiquitous challenge (GC-
U);

I. INTRODUCTION

Requirements traceability supports practitioners in reaching
higher project maturity and better product quality. To gain
this support, traces between various artifacts of the software
development process are required and must be established. De-
pending on the number of existing artifacts, establishing traces
can be a time-consuming and error-prone task. Additionally,
the manual creation of traces frequently interrupts the software
development process. In order to overcome those problems,
practitioners are asking for techniques that support the creation
of traces [1], [2], [3]. The community of researchers work-
ing on requirements traceability problems recently defined
a catalog of common and important research goals, the so-
called grand challenges of requirements traceability [4], [5].
The work presented here refers to the ubiquitous traceability
challenge (GC-U). The challenge is described as “establishing
traceability manually is open to human error and inconsistency,
and its quality is only as good as the efforts of its weakest
human link” [4], [5]. As a consequence, “traceability should
not be the goal of software and systems development, it should
not force a break in the engineering”1.

1http://www.coest.org/index.php/research-directions/grand-traceability-
challenges, last accessed February 2013

To address this challenge, researchers developed semi-
automated techniques that provide support for trace creation.
These techniques are based on information retrieval methods
such as the Vector Space Model (VSM), Latent Semantic
Indexing (LSI), probabilistic networks [6], [7], [8], [9], [10],
[11], and feature location techniques [12]. Despite consider-
able improvements, automated trace retrieval techniques still
only return 85–90% of the targeted traces at low precision
rates of usually 15–25%.

In this paper, we are focusing on the retrieval of refinement
traces. Refinement traces are traces that exist between artifacts
created in different phases of a development project, e.g.,
between features and use cases. Our hypothesis was that infor-
mation about the cohesion of artifacts within one refinement
level could help in improving the retrieval process of traces
among refinement levels and ultimately lead to better trace
retrieval tools. We propose the usage of a graph clustering
algorithm that groups artifacts within a refinement level into
different clusters by computing cohesion within the clusters
and coupling among clusters.

Our research question was: Can knowledge about the clus-
tering of artifacts that belong to the same refinement level of a
development project help in discovering traces between those
artifacts and artifacts belonging to another refinement level?

The goal of our work was to assess the effect of clustering
for the trace retrieval process. Accordingly, we combined the
clustering with the widely used Vector Space Model (VSM)
[13], [6]. We assessed the effectiveness of our approach in
several TraceLab experiments. The results of our VSM +
clustering approach were compared on three different datasets
with the performance of the stand-alone VSM and LSI algo-
rithms. We chose VSM and LSI as reference approaches for
two reasons. First, VSM and LSI are industry standard in-
formation retrieval techniques. Second, LSI clusters the term-
document matrix into latent semantic spaces and therefore has
similarities with our approach. As extensively discussed in
[14], LSI with singular value decomposition and clustering
with Fiedler clustering [15] show a high degree of structural
similarity. Although, LSI can only leverage term-document
connections, while Fiedler clustering allow the inclusion of
document-document similarities.

patrickr
Rectangle

patrickr
Typewriter
Published in Proceedings of the 7th International Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE), San Francisco, CA, USA

patrickr
Typewriter
@INPROCEEDINGS{conf/tefse/RempelMK13, author = {Patrick Rempel and M{\"a}der, Patrick and Tobias Kuschke }, title = {Towards Feature-Aware Retrieval of Refinement Traces}, booktitle = {Proc. of the 7th International Workshop on Traceability in Emerging Forms of Software Engineering {(TEFSE)}, San Francisco, CA, USA}, year = {2013}}

r1

r2

u1

r3

u3

u2

u4

r1

r2

r3

0.10.2

0.6

0.2

0.2

0.4 0.010.10.1

r1

r2

r3
0.6

0.2

0.4

(a) Undirected Graphs
(b) Stage 1:

Weighted Graphs

0.2

0.2

(c) Stage 2:
Clustered Graphs

r1

r2

r3

(d) Stage 3:
Retrieved Traces

0.3
+0.2 0.1

+0.2

0.2

0.15

0.1

0.15
+0.15u1

u3

u2

u4

u1

u1u3
u3

u2
u2

u4 u4

A
bs

tr
ac

tio
n

le
ve

l:
Re

qu
ire

m
en

ts
A

bs
tr

ac
tio

n
le

ve
l:

U
se

 C
as

es

Fig. 1. Overview of the approach that uses graph clustering per artifact abstraction level to improve trace retrieval across abstraction levels.

II. APPROACH

In this section we discuss the general ideas and assumptions,
which led to the hypothesis that graph clustering methods can
have a positive impact on existing methods for automated trace
retrieval of refinement traces. Furthermore, we propose an
approach that incorporates graph clustering in the automated
retrieval of refinement traces.

A. Context and General Idea
Typically, complex software products are developed in many

iterations (software releases) as the complete set of all software
product requirements is not entirely known from the beginning
and continuously changes over time. Every iteration consists
of different development phases such as analysis, design,
development, and test. Each phase produces different artifact
types such as requirements, use cases, source code, test cases.
Although, software development is fragmented into various
releases, development phases, and artifact types, the software
product itself consists of features, which were implemented
to serve the needs of stakeholders. Every feature is devel-
oped in one or many software releases through all software
development phases. Thus, a single software development
phase produces a set of artifacts, which represents the feature
on a certain abstraction level (e.g., a set of elements in
a UML class diagram represents a feature on the design
level, a set of source code classes represents a feature on
the implementation level). Thus, every feature of a software
product can exists through all artifact abstraction level of a
development project. These abstraction levels correspond to
software development phases. Artifacts of the same feature at
different abstraction levels should be connected by refinement
traces in order to facilitate their consistent maintenance over
the life of the developed product. We therefore hypothesize
that the identification of features at different abstraction levels

provides additional information, which can be leveraged for
the automated retrieval of refinement traces.

B. Stage 1: Weighted Artifact Graphs

Initially, all n artifacts that belong to the same software
development phase are represented as an undirected fully
connected graph G = (V,E) with V = {ai|ai is an individual
artifact} and E = {ei|ei is a dependency relation between
ai and aj , 1 ≤ i, j ≤ n} as proposed by Chen et al. [16].
Figure 1a shows two such undirected simplex graphs for the
two abstraction levels requirements and use cases.

We define a weight w(ei,j) for each edge of the simplex
graph. The weight expresses how strong two artifacts of the
same abstraction level are connected. For the evaluation of
the proposed clustering approach, we utilize the Vector Space
Model (VSM) with the tf-idf weighting scheme [13], where
tf is the term frequency and idf is the inverse document
frequency. The tf-idf weight is computed as:

wi,j = tfij × log (
n

ni
) (1)

where tfij is the term frequency per artifact, ni is the number
of artifacts in which the term i occurs, and n is the total
number of artifacts.

To calculate the similarity of all possible artifact relations
per artifact abstraction level, a cosine similarity score is
calculated for every possible pair of artifacts:

sim(aj , ak) =

∑m
i=1 wij × wik√∑m

i=1 w
2
ij ×

√∑m
i=1 w

2
ik

(2)

where aj and ak are artifacts. Figure 1b illustrates the two
resulting weighted graphs.

Fig. 2. TraceLab workflow for assessing the performance of our VSM + Clustering approach.

C. Stage 2: Clustered Artifact Graphs

The resulting weighted graph (see Figure 1b) represents
artifacts and their dependencies within the same artifact
abstraction level (e.g., high-level requirements). To identify
artifacts that belong to the same feature we apply a spectral
partitioning method [17], which groups the artifact graph of
each abstraction level into clusters. Therefore, each weighted
artifact graph is transformed into an adjacency matrix A,
where the previously calculated artifact similarity weights are
used as adjacency scores. The corresponding Laplacian matrix
L is defined as:

L = D −A (3)

where D is a diagonal matrix containing the row sums of A.
Fiedler [15] proved that the eigenvector of the second smallest
eigenvalue of the Laplacian matrix, which is often referred to
as Fiedler eigenvector, is suitable to divide a graph into a
sub-graph with maximally inter-connected vertices and a sub-
graph with minimally inter-connected vertices. The rows of the
Fiedler eigenvector with the same sign (e.g., positive) are put
into the same cluster. For each sub-graph, the described Fiedler
method can be repeated to further refine artifact clusters. The
result of this stage of the approach is illustrated in Figure 1c.

D. Stage 3: Retrieved Refinement Traces

Once, artifact clusters per abstraction level have been iden-
tified (see Figure 1c), the actual trace retrieval process is

performed in three steps. The goal is to retrieve refinement
traces between artifacts from two different abstraction levels.

Step 1 The similarity for all possible pairs of high-level vs.
low-level artifacts is computed.

Step 2 The similarity between all pairs of high-level vs. low-
level clusters of artifacts is computed.

Step 3 The results of the first two steps are combined. A
cluster bonus is added to artifact pairs (Step 1) that be-
long to that high-level – low-level cluster pair with the
highest cluster similarity score per high-level cluster
(Step 2). After the cluster score is added, the resulting
artifact pair similarity weights are used to retrieve
artifact traces.

The result of this final stage of the approach is illustrated in
Figure 1d.

III. CASE STUDY

We performed three experiments to evaluate the effective-
ness of our clustering approach in comparison to the VSM
and the LSI approach. Our experiments were implemented and
executed with TraceLab. “TraceLab is an experimental work-
bench for designing, constructing, and executing traceability
experiments, and facilitating the rigorous evaluation of differ-
ent traceability techniques” [18]. We chose TraceLab because
it offered an optimal environment for rapidly evaluating and
evolving our hypotheses.

Fig. 3. Precision-recall graphs for the three evaluated datasets. Red lines show the quality of retrieved traces based on VSM. Blue lines show the quality of
retrieved traces based on LSI. Green lines show the quality of retrieved traces with support of the proposed VSM + Clustering approach.

A. Datasets

We used three different datasets for conducting our exper-
iments: EasyClinic, CM-1, and the Waterloo project. These
datasets are commonly applied for traceability and especially
trace retrieval research. The first two are available from
COEST2. The Waterloo dataset was part of the Tracelab source
code3. The datasets contain different artifact types, allowing
us to evaluate our approach in a broader context. For CM-
1 we retrieved traces between abstract requirements and use
cases. For EasyClinic, we retrieved traces between use cases
and functional test cases. Finally, for the Waterloo project the
goal was to retrieve traces between features and use cases.

B. Experimental Design

To perform the experiment we modeled the experiment
workflow depicted in Figure 2. We used existing TraceLab
importer components to load source artifacts, target artifacts,
and the answer matrix with all correct traces. Additionally,
we used existing preprocessing components of the TraceLab
package to pre-process artifacts, remove stop words, and to
stem words. We developed our own clustering component,
which created artifact clusters based on the clustering algo-
rithm described in Section II. Additionally, we developed two
tracer components, which we used to compare simple term
similarity analysis with our clustering approach.

IV. RESULTS

In order to assess and compare the performance of our
approach for different datasets, we use the following standard
metrics [19]:

• Recall R: measures the fraction of relevant documents
that are correctly retrieved;

• Precision P : measures the fraction of retrieved docu-
ments that are relevant; and

2http://www.coest.org, last accessed February 2013
3This dataset contains several specifications of a VoIP system produced by

3- or 4-person teams as term project for the requirements engineering course
(CS445: Software Requirements Specification) in the Software Engineering
program of the School of Computer Science at the University of Waterloo,
Ontario, Canada.

• Average Precision AP : measures how well a traceability
technique retrieves relevant documents at the top of the
ranked retreval results.

Figure 3 visualizes the results of our experiment as
precision-recall graphs (see Figure 3). Table I shows the
Average Precision of the three approaches (VSM, LSI, and
VSM + Clustering) for all datasets. We applied the aggregation
method4 to summarize the trace retrieval results across all
queries. Table I shows that the clustering approach provides
similar results to the VSM approach for all datasets in terms
of average precision. While LSI outperforms VSM and VSM
+ Clustering for the EasyClinic dataset. VSM and VSM +
Clustering outperform LSI for the CM-1 and the Waterloo
datasets. Figure 3 shows that the results of the three different
approaches (VSM, LSI, and VSM + Clustering) also vary
across the three datasets in terms of recall and precision. While
LSI appears to be most appropriate for EasyClinic, its results
for CM-1 and Waterloo are less promising. VSM and VSM +
Clustering outperform LSI for CM-1 and Waterloo.

TABLE I
AVERAGE PRECISION AP (COMPUTED WITH AGGREGATION METHOD) OF
TRACES RETRIEVED WITH VSM, LSI, AND VSM + CLUSTERING FOR THE

THREE DATASETS.

VSM +
Dataset VSM LSI Clustering
EasyClinic 0.264 0.304 0.257
CM-1 0.425 0.196 0.434
Waterloo 0.472 0.182 0.472

For the EasyClinic dataset, the average precision of VSM
+ Clustering is lower than that of LSI. The lower average
precision of the Clustering approach for the EasyClinic dataset
is the result of higher precision rates at very low recall levels.
That is negligible as primarily the precision at high recall
rates is practically relevant for the automated retrieval of
traces. At high recall levels, the clustering approach produces
similar precision rates to LSI and outperforms VSM. For the
CM-1 dataset, the average precision of VSM and VSM +

4http://www.coest.org/index.php/research-directions/evaluation-methods,
last accessed February 2013

Clustering outperform LSI. Furthermore, VSM + Clustering
slightly outperforms VSM. Especially at high recall level, the
VSM + Clustering approach provides higher precision than
the stand-alone VSM. For the Waterloo dataset, the average
precision of VSM and VSM + Clustering are equal. In fact,
the clustering algorithm identified only a single cluster and
thus made the effect of clustering negligible.

The results of these experiments partly confirmed our
hypothesis on recoverable feature clusters and their positive
impact on the trace retrieval. However, more experiments are
required to draw a general conclusion on the appropriateness
of the proposed approach.

V. EXPERIENCES WITH TRACELAB

Similar to a rapid prototyping environment in other engi-
neering disciplines, the use of TraceLab enabled us to develop
a research idea on the white board and to test it within hours.
We added our ideas as new components to TraceLab. Due
to existing reusable components such as Importers, Prepro-
cessors, Exporters, Visualizers, and Tracers, we were able to
quickly setup a complex experiment.

VI. DISCUSSION AND FUTURE WORK

In this paper, we proposed the usage of a graph clustering
algorithm to support the retrieval of refinement traces, existing
between artifacts created in different phases of a develop-
ment project. We assessed the effectiveness of our approach
in several TraceLab experiments. These experiments employ
three standard datasets containing differing types of refinement
traces. Results show that graph clustering can improve the
retrieval of refinement traces and can make the overall goal
of ubiquitous traceability a bit more realistic. The comparison
of the approaches for the different datasets also shows that
there is no best trace retrieval method. While LSI produced
the best results for the EasyClinic dataset, VSM and VSM
+ Clustering (the proposed method) outperformed LSI for
the CM-1 and the Waterloo datasets. Furthermore, VSM +
Clustering produced equal precision values to LSI at high
recall values. The results of our experiments suggest that the
proposed clustering approach provides reasonable precision
rates regardless of whether the datasets is clustered or not,
while LSI seems more suited for clustered datasets and the
stand-alone VSM more suited for unclustered datasets.

Future work will focus on extending our experiments to
more thoroughly assess the proposed approach. Furthermore,
it could be beneficial to consider additional information about
artifacts, like hierarchy in a document.

ACKNOWLEDGMENT

The authors would like to thank the TraceLab team for
their great work. We are funded by the German Research
Foundation (DFG): Ph49/8-1 and the German Ministry of
Education and Research (BMBF): grant 16V0116.

REFERENCES

[1] J. Cleland-Huang, R. Settimi, E. Romanova, B. Berenbach, and S. Clark,
“Best practices for automated traceability,” Computer, vol. 40, no. 6, pp.
27–35, 2007.

[2] P. Mäder, O. Gotel, and I. Philippow, “Motivation matters
in the traceability trenches,” in Proceedings 17th IEEE
International Requirements Engineering Conference (RE09). IEEE
Computer Society, 2009, pp. 143–148. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/RE.2009.23

[3] E. Bouillon, P. Mäder, and I. Philippow, “A survey on usage scenarios
for requirements traceability in practice,” in Requirements Engineering:
Foundation for Software Quality, ser. Lecture Notes in Computer Sci-
ence, J. Doerr and A. L. Opdahl, Eds. Springer Berlin Heidelberg,
2013, vol. 7830.

[4] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grnbacher, A. Dekhtyar, G. Antoniol, and J. Maletic, The Grand
Challenge of Traceability (v1.0). Springer-Verlag, 2012, pp. 343–412.

[5] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, and G. Antoniol, “The quest for ubiquity: A roadmap for
software and systems traceability research,” in 20th IEEE International
Conference on Requirements Engineering, M. P. E. Heimdahl and
P. Sawyer, Eds. IEEE, 2012, pp. 71–80.

[6] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Softw. Eng., vol. 28, no. 10, pp. 970–983, 2002.

[7] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Enhancing an
artefact management system with traceability recovery features,” in 20th
IEEE International Conference on Software Maintenance. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 306–315.

[8] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,” IEEE
Trans. Softw. Eng., vol. 32, no. 1, pp. 4–19, 2006.

[9] A. Marcus, J. I. Maletic, and A. Sergeyev, “Recovery of traceability
links between software documentation and source code,” International
Journal of Software Engineering and Knowledge Engineering, vol. 15,
no. 5, pp. 811–836, 2005.

[10] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and
S. Christina, “Goal-centric traceability for managing non-functional re-
quirements,” in 27th International Conference on Software Engineering.
IEEE, 2005, pp. 362–371.

[11] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou, “Utilizing sup-
porting evidence to improve dynamic requirements traceability,” in 13th
IEEE International Conference on Requirements Engineering. IEEE,
2005, pp. 135–144.

[12] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. DeLucia, “On integrating
orthogonal information retrieval methods to improve traceability link
recovery,” in Intn’l Conf. on Software Maintenance (ICSM’11), 2011,
pp. 133–142.

[13] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, 1975.

[14] B. Hendrickson, “Latent semantic analysis and fiedler retrieval,” Linear
Algebra and its Applications, vol. 421, no. 2, pp. 345–355, 2007.

[15] M. Fiedler, “A property of eigenvectors of nonnegative symmetric ma-
trices and its application to graph theory,” Czechoslovak Mathematical
Journal, vol. 25, no. 4, pp. 619–633, 1975.

[16] K. Chen, W. Zhang, H. Zhao, and H. Mei, “An approach to constructing
feature models based on requirements clustering,” in Requirements
Engineering, 2005. Proceedings. 13th IEEE International Conference
on. IEEE, 2005, pp. 31–40.

[17] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices
with eigenvectors of graphs,” SIAM Journal on Matrix Analysis and
Applications, vol. 11, no. 3, pp. 430–452, 1990.

[18] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin,
E. Moritz, M. Gethers, D. Poshyvanyk, J. Maletic, J. Huffman Hayes
et al., “Tracelab: An experimental workbench for equipping researchers
to innovate, synthesize, and comparatively evaluate traceability solu-
tions,” in Proceedings of the 2012 International Conference on Software
Engineering. IEEE Press, 2012, pp. 1375–1378.

[19] G. Salton, Automatic Text Processing: The Transformation, Analysis,

