
Getting Back to Basics: Promoting the Use of a Traceability Information Model
in Practice

Patrick Mäder1, Orlena Gotel2 and Ilka Philippow1

1Department of Software Systems
Ilmenau Technical University, Germany

patrick.maeder|ilka.philippow@tu-ilmenau.de

2Department of Computer Science
Pace University, New York, USA

ogotel@pace.edu

Abstract

It is widely assumed that following a process is a good
thing if you want to achieve and exploit the benefits of trace-
ability on a software development project. A core com-
ponent of any such process is the definition and use of a
traceability information model. Such models provide guid-
ance as to those software development artifacts to collect
and those relations to establish, and are designed to ulti-
mately support required project analyses. However, trace-
ability still tends to be undertaken in rather ad hoc ways in
industry, with unpredictable results. We contend that one
reason for this situation is that current software develop-
ment tools provide little support to practitioners for building
and using customized project-specific traceability informa-
tion models, without which even the simplest of processes
are problematic to implement and gain the anticipated ben-
efits from. In this paper, we highlight the typical decisions
involved in creating a basic traceability information model,
suggest a simple UML-based representation for its defini-
tion, and illustrate its central role in the context of a model-
ing tool. The intent of this paper is to re-focus attention on
very practical ways to apply traceability information mod-
els in practice so as to encourage wider adoption.

1. Introduction
Traceability is said to bring many benefits to a software

development project, including the demonstration that re-
quirements have been satisfied [1]. That is one reason for
requiring it in the development of safety-critical systems or
to reach a higher certification level according to a maturity
model like CMMI. A major drawback of traceability is the
high effort associated with creating and updating relations.
To make traceability attractive for practitioners who are ei-
ther ambivalent or required to do it, there are two possible
tactics. First, provide an easier and less effort-intensive ap-
proach for creating and updating traceability relations; sec-
ond, increase the benefits of traceability to compensate for

its costs. Both approaches can be supported by implement-
ing a traceability information model. Aizenbud-Reshef et
al. [1] refer to the optimal traceability information model as
one that is customizable and extensible by the user.

At its most basic, traceability is achieved by establish-
ing a relation between two artifacts. With semantics given
to such relations, the relations can be validated and var-
ious analyses undertaken. Several researchers have pro-
posed different traceability meta-models or reference mod-
els, each defining artifact types and relation types, based
upon studies with practitioners [9], [10]. Nevertheless,
recent interviews conducted by the authors of this paper
with practitioners working in different domains have indi-
cated that traceability meta-models are still rarely defined
and used [6]. One reason that was identified was the lack
of knowledge about the benefits that use of such a model
would bring. Another reason, cited by more experienced
practitioners, was the limited support for creating and cus-
tomizing such models within current development tools.

This paper is targeted at this addressing these issues.
Traceability information models are not a new concept, as
shown in Section 2, so we seek to highlight some of the
issues that potentially limit widespread adoption in this sec-
tion. In Section 3, we propose a simple way to define a
traceability information model, and in Section 4 we discuss
how to define constraints for traceability relations so as to
support traceability handling and analyses. In Section 5, we
provide a short guide of heuristics to consider when cre-
ating an initial and viable traceability information model.
The approach, as proposed in this paper, has been imple-
mented and successfully used in our traceMaintainer proto-
type [5] as the basis for the (semi-)automated traceability
updates it performs, and this is summarized in Section 6.
Adoption and integration with other development tools is
also discussed.

2. Related Work
Ramesh and Jarke [9] made extensive observations of

traceability practice in several organizations. Based on



these observations, the authors distinguished high-end and
low-end traceability users, each with different needs. The
authors therefore proposed two levels of reference model,
each for traceability with differing numbers of predefined
relations and entities. The diversity of relation types, cou-
pled with a lack of precise definition and achievable tracing
goals, makes the application of the reference models a com-
plex task. The work does not present how to implement a
reference model in tools nor how to customize it in relation
to project-specific needs. The only suggested mechanism to
configure the model is to cut or add parts.

Spence and Probasco [10] present several traceability
strategies as meta-models for the Unified Process. The au-
thors use only one type of trace and do not discuss the im-
plementation of their traceability meta-models.

Within tools, two different ways to implement traceabil-
ity information models are commonly adopted. The first
approach is trace tagging. This allows the user to define
custom types for relations that are applied to a generic trace
type available in the tool as attributes, stereotypes or tags.
This is the approach that is supported by most commer-
cial development tools, like IBM DOORS, Sparx Enter-
prise Architect and IBM Rhapsody. The second approach
is to define specific relation types within the meta-model
of the tool. Several research prototypes and commercial
tools implement this approach and so provide for a fixed set
of specialized traceability relations [8]. Both approaches
have benefits and drawbacks. The trace tagging is easily
customized by the user within the tool, but the tool gener-
ally treats all traces equally and is not able to validate re-
lations based on the type or to provide specialized behav-
ior and analyses based on the type without additional work.
A traceability meta-model with specialized types of rela-
tions can provide for special treatment of those relations,
but these are fixed in their application, while specific project
needs require customized types of relations.

Based on the drawbacks of the two predominant ap-
proaches underlying tools, it is clear that neither pro-
vides particularly effective traceability support in all cases.
Projects may have very specific constellations of artifact
types and, at the same time, demand user-friendly, sophis-
ticated solutions to mitigate the labor-intensive activity of
establishing and maintaining traceability. The identification
of traceability information (artifacts) that the stakeholders
intend to capture and to use should inform the traceabil-
ity process for a new project. The reduction of artifact and
relation types to the minimal necessary in order to achieve
certain traceability analyses should be one of the main goals
of this definition activity.

Letelier [4] proposes an interesting way to implement
a traceability meta-model by extending the UML meta-
model. The definition of traceable entities and traceability
relation types between them is based on a UML profile. The

approach has several benefits: using the available extension
mechanisms of the UML to define the meta-model; stor-
ing traceability relations as part of the development model
itself; and allowing the definition of project-specific types
of traces between certain artifacts. There are also several
shortcomings. First, the existing trace relation within the
UML meta-model does not allow to trace all types of UML
entities (e.g., attributes, methods and relations). Taking the
UML trace relation as the base type for all defined rela-
tions means that these relations inherit the same shortcom-
ing. On the other hand, the original trace relation still ex-
ists after specialization and can be created between all sup-
ported UML entity types, requiring the user to decide for
the appropriate relation type in the relevant context. Also,
constraints as to the minimum number of trace relations be-
tween certain entity types are not supported, and constraints
are needed in order to validate the existence of relations.

What is lacking is an approach that effectively helps
practitioners to create and then implement a project-specific
traceability meta-model (what we refer to as a traceability
information model) within development tools. Practitioners
must be able to define such models according to their trace-
ability needs and budgets, with ease and using a language
with which they are familiar. Starting from very basic trace-
ability information models, there needs to be the potential
to elaborate and customize these models as necessary. The
traceability information model also needs to be described in
such a way as to guide both the set up and traceability anal-
yses made possible in the development tools that are used.

3. A Traceability Information Model

A basic traceability information model consists of two
types of entity, traceable artifacts and traceability relations
between these artifacts. It also defines which types of arti-
facts are intended to be traced to which related artifact types
and by what type of traceability relations. There are several
reasons for implementing traceability in an agreed way like
this:

• it ensures consistent results in projects with multiple
stakeholders;

• as traceability is also used by people who did not create
it, these people need to know how it has been defined
and what to expect from it;

• as tracing is a complex task, a traceability information
model provides a guideline to ease its set up and allows
for the validation of changes;

• coverage analysis only becomes possible after having
defined what the expected coverage is;

• a traceability information model is a necessary precon-
dition for automated traceability handling, validation
and analyses [7].



A traceability information model can be represented in
many ways. Representing it as a graphical model in a de-
scription language that is familiar to most people in the area
of software development makes it easier to understand and
customize. We propose the use of UML as it is the standard
for the modeling of object oriented systems. Most practi-
tioners in the software development field are at least able to
read and customize UML diagrams. UML is often used to
support the development activities within a project itself, so
use for defining a traceability information model requires
no additional knowledge and tools.

In this sub-section, we step through how traceability can
be precisely defined by creating a traceability information
model. In Section 4, we refer to the definitions and show
how each facilitates certain analyses and validation.

Traceable artifact types and permitted traces The
traceability information model consists of entities repre-
senting types of traceable artifacts. A precondition for a
traceable artifact is a unique identifier. Each traceable arti-
fact is represented as a class. Examples for traceable arti-
fact types are requirement, test case and design component.
Valid traces between two traceable artifact types are defined
as a relation between them. Only defined traces are allowed
to be created within the project. Figure 1 shows that use
cases are allowed to be traced to test cases.

Use Cas e Test Case

Figure 1. Permitted trace

Count of required traces Often, a minimum number of
traces between two traceable artifact types is required. By
using cardinalities for the relation between two traceable
artifact types it is possible to require a number of relations
between instances of both types within the project. Figure2
shows a scenario in which each use case has to be traced to
at least one test case and vice versa.

Use Cas e Test Case1.. * 1.. *

Figure 2. Minimum count of required traces

By defining concrete cardinalities for a relation, instead
of an interval, it is possible to require an exact number of
relations between two traceable artifacts. Practitioners de-
veloping safety-critical systems and aiming for certification
in our interviews reported this need. They have to prove
that every requirement has been implemented by an exact
number of implementation artifacts.

Trace types and related artifact roles By defining a
name for a relation between two traceable artifact types it

is possible to define types of traces. This additional infor-
mation allows for a better understanding of a trace’s purpose
and for more concrete descriptions in reports and tools. Fur-
thermore, the type can be used to group similar relations
between different traceable artifacts for analysis. In addi-
tion to providing trace types, role names for each related
traceable artifact type can be attached in order to allow for
clearer documentation and description of traces. Figure 3
shows that requirements require test cases, while test cases
validate requirements. Between both artifacts there exists
an validation relation.

Dependency between related artifacts By creating de-
pendency relations between two traceable artifact types, a
dependent and an independent artifact are defined. This
means that the independent artifact has influenced the cre-
ation of the dependent one, but not vice versa. This infor-
mation can facilitate a more efficient determination of the
impact of a change to an artifact and the propagation of this
change to related artifacts. Figure 3 shows a test case that is
dependent upon the requirement it is validating.

Requirement Test Case+requires
Validation

+validates

Figure 3. Defined dependency, type and arti-
fact roles for a trace

Mapping between tool and project artifact types Tools
provide generic artifact types from the modeling domain
they support. Within a project, the tool artifact types are of-
ten used to represent more specific project artifact types. It
is also possible that one tool artifact type represents multiple
project artifact types or multiple tool artifact types are used
to represent the same project artifact type. For example, a
requirement artifact of the tool can be used to represent user
and system requirements in a project (as per the Figure). In
a more generally defined information model, a requirement
artifact within the project could be permitted to be created
as either a use case or a requirement artifact within the tool.

«tool artifact»
Requirement

«project artifact»
User Requirement

«project artifact»
System Requirement

«map»

«map»
{stereotype == “system requirement“}

{stereotype == “user 
requirement“}

Figure 4. Mapping between artifact types

The definition of a mapping shows which tool artifact
types are intended to be used to represent project artifact
types. If the traceability information model is used by a
tool it is absolutely necessary to define such mappings in
order to allow for automated use of the model. The defined
tool artifact types do not necessarily have to belong to only



one development tool. A stereotype or attribute can define
the tool an artifact type belongs to.

For a mapping of one tool artifact type to multiple project
artifact types (as per the Figure), it is necessary to define
additional constraints that allow the corresponding project
artifact type for a given concrete artifact to be determined.
These constraints can be expressed in the Object Constraint
Language (OCL). The constraint could, for example, evalu-
ate the stereotype of an artifact, the name of the package it
is contained in or the tagged values attached to it.

4. Analyses Based on a Traceability Informa-
tion Model

A defined traceability information model enables differ-
ing analyses, a selection of which are illustrated in this sec-
tion. Guidance to practitioners is to first understand the
analyses that are likely to be the most useful to the project
at hand and to create the simplest possible traceability in-
formation model to enable these analyses. More sophisti-
cated types of analyses may require subsequent elaboration
of the traceability information model, so such customization
needs to be possible.

Validating traces Validation of traceability is important
in order to ensure the correctness of any analyses based on
it. There are two ways to ensure that a project’s traceability
relations conform with the defined traceability information
model. First, by triggering an analysis to check at a certain
point in time. It is important to note that only the confor-
mity to the model can be validated by this analysis. It is
not yet possible to find relations that are semantically in-
correct. Second, allowing a trace only to be created (either
manually or automated) if it is permitted by the traceability
information model. The second way ensures that no false
relations exist at any time and should be supported by tools
where this is a critical constraint for analyses. Nevertheless,
a validation on demand and triggered by the user is also im-
portant to support. For example, if the traceability informa-
tion model is changed after a set of traces has already been
created, a number of traces may become invalid.

Impact analysis and change propagation Facilitated by
dependency relations between artifact types defined in the
traceability information model, impact analysis and change
propagation provide more specific results as they can be
constrained to only refer to dependent artifacts. For exam-
ple, so that changes to design elements are only propagated
to dependent code elements, instead of also to independent
requirements.

Coverage analysis Within the traceability information
model, permitted traceability relations between artifacts are
defined. By defining cardinalities, a certain number of rela-
tions can be required and this can be validated by a coverage
analysis. This analysis is not only thought to find missing

traces, but even more to find missing artifacts. For exam-
ple, requirements that have not yet been implemented. By
also searching for those elements within the model that are
not yet traced but have the same types as those of the cov-
erage analysis, possible missing relations can be suggested.
The results of the coverage analysis can also provide infor-
mation about the status of a project’s traceability set and so
about the comprehensiveness of other analyses.

Relation count analysis Another possible analysis is to
check the number of existing relations between two types
of artifacts. A large number of relations between two types
of artifacts can suggest either that the trace granularity is too
coarse or that functionality or responsibility is concentrated
in one artifact. Analysing the statistical distribution of trace
counts may help to decide between both cases. An exam-
ple of an analysis result suggesting a design problem could
be a class with five traces to different use cases. This “su-
per class” may have too much functionality concentrated in
itself. If all classes are related by many traces this may in-
dicate that the tracing to classes may be too coarse and that
an adjustment of the traceability information model would
be useful.

5. Creating a Traceability Information Model
Traceability information models are not a new idea and

the analyses they make possible would seem to offer value.
However, it is evident that even where the benefits are rec-
ognized, the matter of providing simple practitioner guid-
ance and support still needs addressing.

It is clearly necessary to start by analyzing the needs
to be satisfied by traceability in a given project. This re-
quirements analysis helps to identify relevant artifacts to be
retrieved in a trace inquiry. In addition, the development
methodology and functionality of the development tools
used define available and accessible artifacts, so also influ-
ence the creation of the traceability information model.

Some prior consideration about the granularity and types
of related artifacts can avoid inconsistencies later and re-
duce the number of relations established, resulting in less
effort for traceability handling. Usually, a high-level re-
quirement is taken as the starting point for traceability in
a traditional development process (post-requirements trace-
ability [3]). From there, artifacts are traced to one or more
end points in a forward and backward direction. Intermedi-
ate artifacts (e.g., analysis models), should also be related if
the intention is to keep them consistent while other artifacts
evolve. If intermediate artifacts are traced, then usually no
other trace should bypass these intermediate artifacts in or-
der to avoid inconsistencies.

Establishing the ’right’ granularity of traced artifacts de-
pends on the intended use and on the available resources for
handling traceability. For example, it might be sufficient to
trace a low number of features to their corresponding imple-



mented components in order to guide new team members to
the relevant part of the code, but it could also be required
to document that each system requirement has been imple-
mented, demanding finer-grained traceability. While there
is no standard answer to what is the ’right’ granularity, some
points may be worth considering: (1) The granularity of re-
lated artifacts should correspond to one another. Tracing
coarse artifacts on one side to finer-grained artifacts on the
other side requires a large number of relations while not
providing more information than tracing coarse artifacts on
both sides (e.g., tracing features to methods requires a larger
number of traces while likely not providing more informa-
tion than tracing features to classes or components). (2) It
usually makes little sense to trace several artifacts that are
in a hierarchical relation to each other as the relation to the
coarser artifact can be derived from the finer-grained one
(e.g., tracing features to classes and use cases to methods,
while features are already related to use cases).

6. traceMaintainer Prototype
Our traceMaintainer prototype reads a traceability infor-

mation model defined according to the description in Sec-
tion 3 and stored in XMI format. Advantages are that most
UML tools are able to read and write models in the XMI
format. Furthermore, the format allows users to customize
the traceability information model within the tool that she
or he is used to and without the need for the tool vendor to
provide a special editor.

The traceability information model is used by traceMain-
tainer [5] to validate any intended new traceability relation
regardless of whether created manually by the developer or
as part of a (semi-)automatic traceability update. Further-
more, traceMaintainer provides change propagation after
changes to related artifacts by setting the status of related
relations to suspect. Changes are propagated to traced arti-
facts and only to those defined as dependent on the changed
one within the information model (see Section 3).

«project artifact»
Use Cas e

«project artifact»
Analysis Class

«project artifact»
Design Clas s

«tool artifact»
Use Cas e

«tool artifact»
Clas s

+realizes

1.. *Realizat ion

+requires

1.. *

+implements

1.. *Implementat ion

+requires

1.. *
«map»

{package == analysis}
«map»

{package == design}
«map»

Figure 5. A simple information model

The figure shows a simplified traceability information
model that we used during an experiment performed to ex-
plore traceMaintainer’s capabilities. The model was created
with Sparx Enterprise Architect within a few minutes and
saved in XMI format. The subjects were provided with a
printed version of the traceability information model to in-
form them about the intended traceability for the project.
The experiment required the subjects to create traces be-

tween use cases and analysis classes and traces between
analysis classes and design classes. Most subjects reported
that traceMaintainer prevented them from creating traces
inappropriately and that they liked the guidance provided
when working on establishing traceability in the experi-
ment. Furthermore, the analysis of the experiment became
easier as we could be sure that only traces according to the
traceability information model had been created, and we
could also have more confidence in the analyses provided.

7. Conclusions and Future Work
A traceability information model is the baseline for any

analyses based on traceability. This paper has illustrated
how a basic traceability information model can be presented
and used in practice, and re-iterated the benefits its use can
bring. Implemented within development tools, it has the
potential to ease traceability creation and maintenance, and
to bring more confidence to use. The practitioner simply
has to create the traceability information model via simple
description and, after referencing it within the used tool, in-
stant validation of trace creation and changes can be made,
and desired analyses become supported.

Traceability information models are an essential compo-
nent of any traceability process and this paper is an attempt
to get back to some basics to both encourage and facilitate
wider adoption of these models in practice. In cooperation
with EXTESSY AG [2], we are currently discussing the im-
plementation of traceability information models according
to this approach in the context of tool integration, so as to
support traceability amongst different tools and broaden the
access to practitioners.

References
[1] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-

Gafni. Model traceability. IBM SJ, 45(3):515–526, 2006.
[2] Extessy AG, Wolfsburg, Germany. www.extessy.com.
[3] O. C. Z. Gotel and A. C. W. Finkelstein. An analysis of the

requirements traceability problem. In First Int’l Conf. on
Req. Eng. ICRE, pages 94–101. IEEE CS Press, 1994.

[4] P. Letelier. A framework for requirements traceability in
UML-based projects. In 1st TEFSE, UK, Sept. 2002.

[5] P. Mäder, O. Gotel, and I. Philippow. Rule-based mainte-
nance of post-requirements traceability relations. In Proc.
16th Int’l Req. Eng. Conf., Barcelona, Spain, Sept. 2008.

[6] P. Mäder, O. Gotel, and I. Philippow. Motivation matters in
the traceability trenches. submitted, 2009.

[7] F. A. C. Pinheiro. Requirements traceability. In Perspec-
tives on Software Requirements, pages 91–113. Kluwer Aca-
demic Publishers, The Netherlands, 2004.

[8] F. A. C. Pinheiro and J. A. Goguen. An object-oriented tool
for tracing requirements. Software, 13(2):52–64, Mar. 1996.

[9] B. Ramesh and M. Jarke. Toward reference models of re-
quirements traceability. IEEE TSE, 27(1):58–93, 2001.

[10] I. Spence and L. Probasco. Traceability strategies for man-
aging requirements with use cases. WP TP166, IBM, 2000.


