
traceMaintainer – Automated Traceability Maintenance

Patrick Mäder1, Orlena Gotel2, Tobias Kuschke1 and Ilka Philippow1

1Department of Software Systems
Ilmenau Technical University, Germany
patrick.maeder|ilka.philippow@tu-ilmenau.de

2Department of Computer Science
Pace University, New York, USA

ogotel@pace.edu

Abstract

traceMaintainer is a tool that maintains post-
requirements traceability amongst the elements of struc-
tural UML models. The maintenance of traceability re-
lations is based upon predefined rules. Each rule rec-
ognizes a development activity applied to a model ele-
ment. traceMaintainer carries out associated traceabil-
ity updates in the background after an activity has been
completed, requiring minimal manual effort and limited
interaction with the developer. Currently, traceMain-
tainer can be used with two commercial software de-
velopment (CASE) tools to update the traceability rela-
tions stored within them, while the underlying approach
extends further to maintaining traceability within a het-
erogeneous and distributed environment of tools.

1 Introduction and Motivation

Up-to-date traceability relations support many soft-
ware development tasks, such as validating the imple-
mentation of requirements and analyzing the impact
of changing requirements. This support requires not
only the creation of traceability relations during initial
development, but also the maintenance of these rela-
tions after any changes are made to related artifacts.
The large number of potential relations, even for small
systems, demands effective method and tool support.

We focus on post-requirements traceability between
requirements and subsequent development artifacts [1]
and have developed an approach to automatically
maintain such relations established between elements
of structural UML models [2]. The traceMaintainer
tool supports this approach. It analyzes elementary
change events captured while working within a CASE
tool. Within the captured flow, sequences of events
are searched that correspond to predefined rules that
specify recurring development activities, semantically
meaningful changes to a model composed of elemen-

tary changes. A matching rule results in a directive to
update impacted relations to restore traceability.

2 traceMaintainer

traceMaintainer has been designed to be deployable
with any CASE tool that allows for the capture of
the necessary elementary change events and permits
for the manipulation of traceability relations from out-
side the tool. It is necessary to write an adapter for
each tool. The main purpose of an adapter is to gen-
erate change events and collect element properties to
provide the rule engine with standardized data for pro-
cessing. Adapters also allow the rule engine to update
the traceability relations kept within the tool. We have
developed adapters to ARTiSAN Studio and Sparx En-
terprise Architect to date, and have created a rule cat-
alog for changes to structural UML models developed
within these tools (Figure 1). The rules are defined
using XML according to a XML Schema Definition.

CASE tool
e.g. Enterprise Architect

traceMAINTAINER

Rule catalog and
rule engine

Link update manager

Stage 1: Send events
 for model changes

Stage 3: Send traceability relations
 maintenance directives

Changing a model
within a CASE tool

Toolspeci�c event
generator and
link handler

Stage 2:
 [on rule match]
 Trigger link update

trace
 MAINTAINER

Figure 1. traceMaintainer’s architecture

In heterogeneous settings of requirements and soft-
ware engineering tools, the CASE tools are only used
to capture the necessary change events. The trace-
ability relations of the composite toolset are main-
tained within a third-party tool. EXTESSY ToolNet
has been used as the repository for our work in this
area. traceMaintainer handles the rule matching and
provides ToolNET with the update directives.

3 Scenario

We provide a simple scenario to illustrate our ap-
proach and tool support. A change to a requirement
impacts a realized use case and it becomes necessary
for the developer to convert an attribute into its own
class (Figure 2). Step 1 shows the initial situation and
the relation between class Order and use case Create
Order. Steps 2 to 5 show one way for the developer to
carry out the development activity based on a sequence
of elementary changes. With the last change event,
deleting the original attribute, the development activ-
ity is recognized by traceMaintainer and the necessary
update of traceability relations is performed automati-
cally. Step 6 shows the automatically created traceabil-
ity relation between class AudioSystem and use case
Create Order. traceMaintainer can recognize the same
development activity via any ordering of the same el-
ementary changes or via different sets. A matching
algorithm makes it unnecessary to specify variations.

Step 1: Change of a traced use case
(Numbers on elements depict OUT•IN trace
relations; relations backward from dependent
to independent element)
Step 2: Add a new class
Step 3: Rename new class and add
additional properties
Step 4: Add association between class
Order and AudioSystem
Step 5: Del original attribute audioSystem

Step 6: Traceability links have been updated automatically
(2 incoming links on use case, 1 outgoing link on each class)

Figure 2. Updating traceability relations

The scenario is representative of most change activ-
ities. Nevertheless, there are some activities that, al-
though recognized by traceMaintainer, do not lead to
clear directives for traceability update. Figure 3 shows
an example where method printOrder has been moved
from class Order to class OrderManager. Class Order
holds two traceability relations to realized use cases and
one traceability relation to associated source code (see
upper left corner of class Order). For this activity, it is
not possible to determine whether the moved method is
part of the realization of one or both of the realized use
cases. In such ambiguous situations, traceMaintainer
shows the dialog depicted in Figure 3 to let the user
decide between traceability update alternatives.

traceMaintainer distinguishes traceability to inde-

pendent model elements (outgoing relations) and to
dependent model elements (incoming relations). Here,
class Order has one incoming relation from source code
and two outgoing relations to use cases. Both incoming
and outgoing relations can be updated by traceMain-
tainer automatically, but it is likely that the dependent
model element is no longer valid given its dependency
upon the now changed element. For this reason, in-
coming traceability relations are set as suspect after
automatic update to facilitate manual inspection.

Figure 3. Decisions on traceability update

4 Status

The success of our approach depends upon tool sup-
port and the quality of the predefined rules. To define a
comprehensive set of rules, we studied several develop-
ment methodologies and industrial projects, and deter-
mined the traceability-relevant activities that typically
occur during the analysis and design of systems using
UML. 38 development activities have been identified
and are part of traceMaintainer’s rule catalog (21 rules
with 67 alternatives). These have been used, validated
and refined, and the early results are encouraging [2].

Since the rules are likely to evolve, we are creating an
editor for their definition and validation. We are also
investigating how to semi-automatically define rules by
observing the developer performing change activities in
situ using a rule recorder. We are further investigating
how to handle the undo function within CASE tools ef-
fectively, whilst still recognizing development activities
accurately, and industrial case studies are planned.

References

[1] O. C. Z. Gotel and A. C. W. Finkelstein. An analysis of
the requirements traceability problem. In 1st Int’l Conf.
Req. Eng. (ICRE), pages 94–101. IEEE CS, 1994.

[2] P. Mäder, O. Gotel, and I. Philippow. Rule-based main-
tenance of post-requirements traceability relations. In
Proc. 16th Int’l Requirements Eng. Conf., 2008.

