Customizing Traceability Links for the Unified
Process

Patrick Méder, Ilka Philippow and Matthias Riebisch

Software Systems/Process Informatics Group
Technical University of Ilmenau, Germany
patrick.maeder|ilka.philippow|matthias.riebisch@tu-ilmenau.de

Abstract. Traceability links are generally recognised as helpful means
for improving the effectiveness of evolutionary development processes.
However, their practical usage in analysis and design is still unsatisfying,
especially due to the high effort required for creation, maintenance and
verification of the links, and due to lacking or missing methods and tools
for their management.

In this paper a concept for the systematic management of traceability is
introduced, adapted for the and integrated into the Unified Process as
one of the widely accepted software development methods. As an exten-
sion, requirements templates are applied to facilitate a tool supported
analysis of natural language texts in use case descriptions. Template-
based analyses enable a determination of types of terms and a check of
their correct application as well as a recognition of implicit connections
between development artefacts. A rule set is defined as a first step to-
wards a powerful support of traceability handling. In the ongoing project
the rule set is enhanced by heuristics and semantic-based rules to a whole
framework of methods and rules.

Keywords. Traceability Link, Traceability Model, Evolutionary Devel-
opment, Requirements Engineering, Object-Oriented Methods, Require-
ments Templates, Unified Process, Glossary

1 Introduction

Complex, business critical software systems have to adapt to frequently changing
needs. Evolutionary development processes have been developed to enable short
responses to changes. In complex settings changes bear high risks, such as in-
complete implementation, misunderstood dependencies, missing comprehension
and lacking coverage. To manage these risks, the concept of traceability has been
developed and introduced to the most development process standards. However,
we have to state that traceability is poorly used in practice, and their usage
is mostly limited to requirements engineering. Even in research, traceability is
more discussed for requirements.

However, traceability links are needed in the areas of design and imple-
mentation as well. They facilitate design decisions and change impact analysis,
they support program comprehension and they enable completeness checks for

changes, if they can be maintained in a correct and complete state. For a com-
prehensive support of such design activities, traceability links have to be defined
at a fine-grained level. Unfortunately, the maintenance of the links for such a
way of design traceability requires an extremely high effort because a high num-
ber of links has to be managed, and many link maintenance tasks have to be
carried out manually. Two major open research questions have to be addressed:
to master the amount and the complexity of traceability information, and to
maintain and update the links. A tool support would be very helpful, but would
require a traceability link update into development methods. Even if most design
methods claim to support the concept of traceability, their definitions of arte-
facts, relations and activities are too imprecise to define traceability link update
techniques.

As discussed earlier, our vision is the integration of traceability link man-
agement and maintenance into development methods and tools [1]. One of the
challenges on this way consists in the refinement of the description of the ma-
jor development methods. Detailed development activities are then extended by
update activities for traceability links. The developer’s activities are enriched
as well, e.g. by describing the reasons and decisions for that activity. To meet
the needs of the industrial practice it is necessary to perform this refinement for
concrete development methods that are widely used in industry. In this paper
we have chosen the Unified Process UP [2] for the definition of a process-specific
model of traceability links. Although, Letelier showed in [3] the application of
his metamodel for the UP, his definitions are not detailed enough to derive rules
for traceability links. The UP description by its authors offers traceability as one
of its features, but there is no detailed description of how and between which
artefacts the traceability links should be established. Furthermore, works are
necessary to define traceability links syntactically and semantically.

The contribution of this paper consists in an analysis and classification of
UP artefacts concerning to traceability aspects. Based on that, all required links
between the artefacts of the UP activities of requirements engineering and de-
sign are defined. Additionally, a syntactic and semantic definition of traceability
links is established customized to the UP’s methods. This definition has been
developed and validated in practical projects and case studies. These results con-
stitute a milestone and provide a basis for further works towards our vision e.g.,
empirical investigations for rules concerning the suitable level of detail for trace-
ability links, or for rules how far to follow traceability links during the impact
analysis of a change.

The analysis of the UP and the customisation of the traceability concept
are performed during practical development projects. As results of these works,
guidelines for the level of detail and rules for the verification of traceability links
have been established.

2 Traceability

Traceability is the ability to follow and recover the development steps of a system
based on the connection between inputs or stimuli of every development step with
its products. These products are the inputs of next development steps. This
leads to a graph of dependencies, which shows the realization of the systems
requirements within the developed system.

The following concepts and definitions are based on the related works men-
tioned in section 4 as well as on our experiences from practical projects in the
Automotive domain.

2.1 Categories of Traceability

Implicit Traceability. Implicit traceability results from existing associations be-
tween elements of the system model. For example, the use of the same identifier
in an analysis and a design artefact expresses a dependency between both. The
creation of this traceability link does not cause any additional effort.

Eaxplicit Traceability. Explicit Traceability results from the establishing of con-
nections between two artefacts during the software development process by a
developer. It can be considered as an enhanced form of traceability [4], enabling
the storage of additional information with the link. This information for example
could be decisions made during analysis and design. By using explicit traceability
links, program comprehension and changes of the system are facilitated.

The creation of explicit traceability requires additional effort of the developer.
If one or both of two linked artefacts are changing, there is a risk that the
traceability link is becoming inconsistent or invalid. It is necessary, to check
explicit traceability links between changed artefacts, before they are used.

In contrast to explicit traceability implicit traceability describes references
between two model elements, without any additional properties. It is possible
to search for implicit connections, to store them and make them explicit. Thus,
the benefits of adding additional information are given. But, in this case it is
necessary to verify the correctness of the link, before using it.

2.2 Traceability Links

Components of Traceability Links. In the following we define the compo-
nents of an explicit traceability link. This definition is driven by the goal of
(semi)automatic support for link establishment and maintenance and focuses on
getting the highest possible benefit from the usage of traceability. It provides
the required data e.g. for the conservation of design decisions and for performing
an impact analysis. This definition was established based on an analysis of the
related works mentioned in section 4 and by our experiences from projects in
the Automotive domain. An explicit traceability link consists of:

— a unique identifier for its recognition and to avoid ambiguity,

— a start element as source of the link, including type and context of this element

(e.g. a class of the analysis model)

an end element as destination of the link, including type and context of this element

the type of the link

— the development decision connected with the link, including the goal of the decision,
alternatives, rating of the alternatives and the choice

The link can contain additional information:

— the link status concerning the certainty of correctness (e.g. after changes of one or
both of the connected elements),

— the creator of the link and

— a priority, which shows the importance of the link and allows to check only high
prioritised links after changes of elements (according to [5]).

A traceability link is syntactical defined in Backus-Naur-form as follows: This

Traceability Link::= <ID> <Start element> <End element> <Type> <Decision>
[<Status>] [<Developer>]| [<Priority>]

Start element::= <ID>

End element::= <ID>

Type::= refine | realize | verify | define
Decision::= <Goal> <Alternatives> <Choice>
Status ::= 0 ...| 100 “%”

Developer::= <Text>

Priority::= 01

Goal 1= <Text>

Alternatives::= <Alternative> | <Alternative> <Alternatives>
Choice::= <Alternative.ID>

Alternative ::= <Alternative.ID> <Text>
Alternative.ID::= <Number>

definition of a link provides all information required for the link establishment
and update as well as for the traceability goals mentioned above. It conforms to
the UML metamodel [2].

Types of Traceability Links. The traceability link type shows the relation-
ship between two connected elements and/or the development activity for the
generation of the destination element from the source element. A reduction of
the number of types of traceability links aims at a minimization of the neces-
sary number of rules for establishing and checking of links. Several authors use
different types of links for different concepts: The link types of UML [2] and its
extension SysML [6], by Letelier [3] and in the link metamodel of Ramesh and
Jarke [7] differ in its concepts and categorisation. Based on the analysis of theses
works of related works (sect. 4) and on our experience from projects and case
studies, the following four basic types of traceability links have been identified:

— Refinement («refine») — in accordance with the level of detail of the connected
objects (e.g. between an analysis and a design object),

— Realization («realize») — the dependent object represents a part of the solution to
the problem described with the independent object (e.g. between a use case and
an analysis class),

— Verification («verify») — of behaviour and properties of the developed solution or
its parts (e.g. between a use case and a test case) and

— Definition («define») — of objects (e.g. between a glossary item and its usage in
one of the models).

Representation. In the UML traces are defined as a special kind of dependency.
Therefore, the same graphical representation is used: a unidirectional arrow,
enhanced with the stereotype «trace». For a simple dependency the arrow is
directed from the dependent (destination) to the independent (source) element
e.g. an analysis object is connected toward a use case. The graphical direction of
the traceability link does not exclude its usage in both directions, forwards and
backwards.

3 Software Development Processes and Methods

Software development processes consist of activities and artefacts leading from
requirements to the systems implementation. The handling of traceability links
can be the more automated the more the acts of a developer correspond to the
activities of a method. It is possible to apply traceability rules to these activities.
The better and fine-grained the process description is the easier is the defining of
rules for creation and updating of traceability links. Therefore, the approach for
traceability proposed in this paper is presently focused on one concrete process,
the Unified Process.

3.1 The Unified Process UP

In the UP several ancestor methods like Object-Oriented Software Engineering
OOSE [8] have been combined based on best practices and experiences. The UP
is available as commercial and as open-source version. The UP process model,
the activities of the method and the composition of the artefacts are described
detailed enough for the aimed level of support. The UP can be customized and
concretised to particular projects and companies needs. The UP is an incre-
mental and iterative process; it is based on use case and architecture centric
development of software. The incremental, iterative approach can be seen as a
two-dimensional scheme as described in [2]. For establishing traceability links
especially the requirements activities of the UP have to be more detailed and
enhanced. For this purpose text templates akin to those in [9] are integrated into
the process.

3.2 Describing Requirements by Text-Templates

Chris Rupp et al. describe in [9] the requirements development as a three-step
process, consisting of formulating, analysing and successive improving require-
ments by rules. A concept of so-called requirements patterns is introduced to
accelerate this process. Rupp characterises it as a general concept to construct
natural language requirements based on formal defined elements, which are ver-
ifiable and can be modelled. A pattern consists basically of one or more generic,
syntactic requirements templates. Furthermore it consists of a semantic definition
of important parts of the template, of logical operators to combine conditions

and of rules to define test criteria’s. Using the templates supports the definition
of test cases and the identification of objects.

In [9] Rupp et al. categorize requirements into three types: independent sys-
tem activity, user interaction and interface requirement. Figure 1 shows the el-
ements of all three types of requirements combined into one graphic. Each re-
quirement is based on a functionality, which is described by a so-called process
word. A process word is strictly a verb defined in a process word list. From top
to bottom the grey shaded boxes correspond to the introduced three types. If the
requirement is of type user interaction an actor has to be filled into the template.
The legal classification can be chosen by using one of the words: shall, should or
will. To complete the requirements expression an object and its enhancements
and optional logical and time constraints have to filled into the template.

<process>

PROVIDE -
<whom?> THE <thing to be

ABILITYTO [/ processed>
<process detail>

[<When?>
<Under what
conditions?>]

THE SYSTEM

<process>

BE ABLE TO
<process>

Fig. 1. Requirements Templates for all Three Kinds of Requirements

In addition to the advantages of well formulated, verifiable requirements,
the usage of requirements templates offers some more benefits. Requirements
templates support traceability. Rules can be defined based on the type of the
requirement, its elements and the position of these elements within the sentence.
Eventually this supports the consistency between different model elements. A
detailed explanation of this support is given in the next chapter.

The Rupp text templates can effectively support the structured description
of use cases according to [10]. For enabling the definition of activities in use
case descriptions we have coupled the text templates closely to the development
glossary: all terms filled into the template have to be defined in the glossary.
The actors of the user activity have to be the same as these specified in the field
actors of the use case description.

User Activity <actor> <process> <thing to be processed and details>.
System Activity The System [shall/should/will]
<thing to be processed and details> <process>.

3.3 Traceability Relevant Artefacts in the UP

In this section traceability relevant artefacts of the UP are introduced. We focus
mainly on the workflows requirements and analysis/design, as these contain the
traceability relevant activities and artefacts.

Artefacts of the Requirements Workflow.

Requirements. Requirements describe properties or features of the system that
has to be developed. In the UP they are not hierarchically ordered instead they
represent different views for different groups of stakeholders.

The Vision Document contains Needs, describing informally what the stake-
holders expect of the system and Features, describing informally what the system
offers to fulfil these needs.

The Software Requirements Specification (SRS) consists of Software Require-
ments, which are commonly divided in functional and non-functional require-
ments and constraints. The UP centralizes these requirements in two artefacts:
the Use Case Model, consisting of all functional requirements and the Supplemen-
tary Specification, consisting of all non-functional requirements and constraints
expressed as declarative statements.

Glossary. The glossary lists terms of the project domain and gives a definition
to each of them. The strict usage of defined glossary terms in all development
phases enables automated generation of connections between the same terms
used in different artefacts. Every special term from the very beginning of a
project has to be defined in the glossary. Only defined terms are allowed to
be used during the development process. That means, that the identifier of all
model elements consist only of defined terms. Also the elements of the before
introduced requirements templates have to be defined in the glossary. Glossary
items can be categorised into type groups, according to Rupp [9] in three types:
actor, object and process. By using additional information about the type of a
term, rules can be identified for suggesting a special term while naming an object
or writing a requirement. These rules can also be used to support the verification
of the right usage of terms in the model.

Domain Object Model (DOM). The DOM represents glossary items as classes
in UML class diagrams. The usage of equal names in both artefacts realizes a
connection as implicit traceability links.

Interface Description. Interfaces are described, depending on their kind as e.g.,
prototypes of graphical user interfaces, drawings or textual descriptions.

Artefacts of the Object-Oriented Analysis.

Analysis Class. Analysis classes define the necessary structure for the realization
of a use case in the system. Class identifier must be meaningful and domain
specific and have to be defined in the glossary.

Package. Packages organize model elements and diagrams in groups.

Use Case Realization-Analysis. Use case realizations consist of a set of diagrams
describing a use case specification. For visualisation of the structure a class
diagram is used. Interaction diagrams describe the communication between these
classes.

Relation Between Analysis Objects. Relations visualize functional or structural
dependencies. The following relations can occur between analysis objects: Asso-
ciation, Generalization, Dependency and Hierarchy.

Analysis Model. An analysis model consists of all artefacts, developed during
the analysis workflow.

Architectural Description. An architecture description is a short textual sum-
mary of architecture relevant aspects of the system.

Artefacts of the Object-Oriented Design.

Design Class. Design classes are refined and detailed classes, suitable and ready
for implementation.

Use Case Realization-Design. Use case realizations-design describe the collabo-
ration of several design objects for use case realization.

Subsystem and Component. Subsystems and components result from decompos-
ing complex systems into smaller, easier manageable parts of the system.

Design Model. A design model is a refinement of the analysis model and is
enhanced with more details and particular technical solutions. The elements of
the design model have to be specified as far, that they can be implemented.

3.4 Development Activities and Relations Between Model Elements

In this section a model of useful traceability links for the UP is proposed. At
first the UP development activity is named and then, related to it, traceability
links between the developed artefacts are introduced. For illustration, every step
is explained by a simple example, for a wiper control. The activity chart in
Fig. 2 contains only those activities necessary for the establishment of traceability
links. It has to be pointed out that a sequential representation of activities is
used for better visualisation. However, in practice the activities are carried out
incrementally in several iterations.

Development Activities during the Requirements Workflow.

Elaboration of the Vision Document. Based on a natural-language text document
of stakeholder requirements (needs), the system features have to be defined. The
needs and the realizing features are connected by explicit traceability links of
the type «

Creating the Glossary and the Domain Object Model. Parallel with the vision
document the glossary elaboration has to be started by defining and entering
all domain-relevant terms. Each new term identified during an activity must be
defined, before it can be used. The developer has to ensure that there is not
already another term defined for the same issue. If the new term has relations to
other terms it has to be modelled in the DOM as well. Additionally, every term
has to be categorized by one of the following types: actor, object or process.
These categories refer to the type of term used within the before introduced
templates and for the naming of model elements. By knowing the type of a
term, it is possible to verify its correct usage within a text template or within
an identifier of a model object.

In our example three terms have been identified based on the feature defini-
tion: wiping speed, interval time and single wipe. They have to be defined and
listed in the glossary. These terms and those for the next development activities
are defined in Table 1. realize» (see Fig. 3).

4

Define Feature)
Use Case Model Test Model ‘Supplementary Specification|

\ \4\'/

.

Analysis Model Use Case Realization-Analysis|

\
/
@enmy Analysis C\55599 625(& Use Case Rea\lzznonrAr\a\y;;

Interface Model

Domain Object Model

1

Create Glossary ltem Create Domain Objec)

Design Model Use Case Realization-Design
7 S

o= 7

/

~ ——— L
Greale Design C\ass% @eate Subsyslem/Componen\t ‘Geﬁne Analysis Relauo@ Qeale Use Case Rea\zanon-Des@

3

Fig. 2. Development Activities of the Unified Process Workflows: Requirements and
Analysis/Design

Development of the Use Case Model. As first step the border of the system and
the interacting actors must be specified. The actors have to be defined in the
glossary as well (Table 1). The next step is to find use cases for the before defined

For the example, the following needs are known: | Based on the needs, the following

The wiper control of a car shall be features could be identified:
developed. It shall be possible to:
e choose different wiping speeds, el Adjustable wiping speed

wrealiye»

e to trigger a single wipe and A = o Single wipe
aealirer
® 10 adjust the time between wipes in «--+-- o Adjustable interval time
interval mode.

Fig. 3. Traceability Links between Needs and Features for the Wiper Control Example

Table 1. Glossary of the Wiper Control Example

Term Definition Type
1 |Driver Person who drives a car Actor
2 [Clamp 15 An electrical connection, which is Object

getting active when ignition is switched
on.

3 [Steering Switch to choose the wiping speed Object
Column Switch |with the positions off, interval,
slow and fast.

Wiping Speed |[Speed of the wiping blade Object
5 [Interval Time [Time between to wipings Object
in interval mode
6 |Wiping Moving the wiper blade from its Object
start position to its end position
and back.

7 |Single Wipe Manually triggered single wiping Object
8 |Choose The user selects one or more elements [Process
from a finite set of elements.

9 |Set The system logically chooses the value |Process

of a certain figure, according to
selection criteria from a finite set.

10| Trigger The user starts by a certain Process
action a process of the system.

features. Between use cases and features m:n relations can exists, that means that
several use cases can refine one feature or that several features are refined by
one use case. Features and use cases are connected by an explicit traceability
link of type «refine». The association between an actor and a triggered use case
can lead to an implicit traceability link. The use case specification should be
enhanced with test case specifications for the verification of its realization. Use
cases and test cases have to be connected by an explicit traceability link of type
«verify». The relation is of m:n multiplicity. For the description of use cases,
text templates akin to Rupp [9] are used (see section 3.2).

In the example the following three use cases have been identified: Set Wiping
Speed, Choose Interval Time, and Trigger Instant Wipe. These use cases are
connected to the before defined features by explicit traceability links of type
«refine» (see Fig. 4).

Table 2. Example Description of the Use Case “Set Interval Time”

Name |[Choose Interval Time
Description|This use case allows the driver to set a new interval
time, which is waited between two wipes.
Actors|Driver

Rationale|Steering column switch has been set to position interval.

Precondition [Clamp 15 is active and the steering column switch
has position OFF.
Normal Flow 1|The driver switches the steering column switch to
position INTERVALL.
2|The driver switches the steering column switch to
position OFF.
3|The driver switches the steering column switch after
not more than 30s to position INTERVALL.
4|The system has to set the new interval time as the time
the steering column switch has been in position OFF.

Altern. Flow |no
Postconditions|no

Wiper Control Features
FR-1 [Adjustable

«reﬁnez_ Sty
I Wiping Speed
ping Sp refiner_ S7| FR2 | Adjustable Interval Time
//

FR-3 | Single Wipe
Pig 1

-
Choose Interval \ «fefine»,
Time

d
4
d

e
Driver Trigger Single Wipe

Fig. 4. Traceability Links between Features and Use Cases for the Wiper Example

Development of the Interface Description. Textual documents, GUI-prototypes
or models can be used for interface descriptions. The description of an interface
contains associations between actors and use cases, in which an interface is used,
represented by an explicit traceability link of type «refine». In the example there
is only one interface between driver and system, the steering column switch of
the car (see Fig. 5).

nterfacedescription» -
Steering Column Switch| Wipercontrol
wreﬁneu
\refinen

» Set Wiping Speed
wefine
ALY

Choose Interval
Time

Driver Trigger Single Wipe

Dag

Fig. 5. Example of an Interface Description

Development Activities of Object-Oriented Analysis.

Identification of Analysis Classes. In the analysis phase classes and packages are
used for modelling the structure of the system. In the UP analysis classes are
distinguished as interface, entity or control class. There are different approaches
for finding analysis classes. The examination of nouns and verbs in use case
descriptions is a widely accepted technique. Nouns are candidates for classes or
attributes and verbs are candidates for responsibilities or methods. Another way
to find classes is the CRC-card method. The particular choice for a method is
determined by the project. Every use case is connected by explicit traceability
links to the analysis classes, which realize its flow. Each class can be connected
to several or only one use case and vice versa. That means a class can realize
more than one use case.

In the example three analysis classes are defined for the three use cases (see
Fig. 6). All use cases are triggered by the driver using the same interface (see

Fig. 5. Therefore all use cases are connected by traceability links with the inter-
face class Steering Column Switch. The use cases Set Wiping Speed and Trigger
Instant Wipe are realized by the class Wiper Control and the use case Choose
Interval Time is realized by the class Interval Reader. All these development
activities are traceable through the corresponding links.

Set Wiping Speed Trigger Single Wipe Choose Inerval

<

«realizer >~ «realizen -~ ealizer — =~ Turealize»
' - i f

~
I ~ Pl - |
J 1
- P 1
! PP l |
Interface» «Entity» «Control»
Steering Column Switch Wiper Control Interval Reader|

[+Switch()

Fig. 6. Identified Analysis Classes to the Wiper System

Performing of Use Case Realizations-Analysis. In this step the cooperation be-
tween the different analysis classes has to be described by UML interaction
diagrams. For each use case at least one diagram is modelled, representing com-
munication and messages between instances.

The interaction diagrams have to be connected with the related use case,
using an explicit traceability link of type «realize». It is also possible to con-
nect them implicitly by using consistent diagram names. By drawing messages
between classifiers in interaction diagrams an implicit connection between the
corresponding classes is established. This connection can be used to verify asso-
ciations in the class model between these classes. The sequence chart in Fig. 7
specifies the necessary communication between the analysis classes, to realize
the use case Choose Interval Time from the example.

sd_Choose Intervall Time,
Choose Interval
Time «Interface» «Entity»
‘Steering Column Switch Wiper Control

~
N Swich |
R E—
arealize» N Switch Position)
S N

Fig. 7. Example of a Use Case Realization

Development Activities during Design.

Creation of Design Classes (Design Class Model). The design model is a refine-
ment of the analysis model. As a first step all elements of the analysis model
have to be copied. The copied elements are considered as initial design model. It
is possible to connect analysis and design elements automatically while copying
them by explicit traceability links of type «refine».

During the design phase almost all elements of the initial design model are
detailed, enhanced and refined step by step. Doing this the traceability links
between elements have to be changed or extended. Newly added design elements
have to be connected to analysis elements. Eventually, every analysis package
has to be connected to one or more design subsystems, each analysis class has to
be connected to one or more design classes and/or interfaces and each use case
realization-analysis hast to be connected to a use case realization-design.

Refinement of Analysis Relations. During design the relations established be-
tween analysis objects have to be further refined and adopted to the chosen
programming language. It is necessary to connect the original relation in the
analysis model and the replacing elements in the design model by explicit trace-
ability links of the type «refine». If an analysis class is realized in the design
model by an attribute of a class or vice versa, this activity has to be docu-
mented by a traceability link as well. The replacement e.g. of a bidirectional
association by two unidirectional associations is shown in Fig. 8.

Class1 Class2

| |
11 1"
«refine»]

| «refine»

Class1

|
1
|
|
’ Class2
|
1

Fig. 8. Refining Analysis Relations to be able to Implement Them

Establishment of Subsystems and Components. The functional decomposition of
the system into packages is started in the analysis phase and completed during
the design phase. The parts of the system, separated by subsystems and their
components communicate only using defined interfaces. Subsystems refining an
analysis package are connected to this package by explicit traceability links of the
type «refine». Newly introduced components and subsystems in the design model
to fulfil non-functional requirements or constraints are connected by traceability
links of the type «realize».

Establishment of Use Case Realizations-Design. During analysis the use case re-
alizations are used to answer the question, what the system has to do to realize
a use case. During design these diagrams are further refined to show how it is
to do. The design diagrams have to be connected by explicit traceability links of
type «refineswith the corresponding diagram in the analysis model. Addition-
ally established diagrams have to be connected by traceability links of the type
«realize» with the related use case.

i 1ts Model

[Vision Document | Interface Model] Glossary]
«realize» — [Domain ObjectModel]
‘ Need){ 77777 % Feature ‘ ‘ Interface Description ‘ Domain Object Model | _ —

T
E Sl S : Object }
«refinen | ! «refine» \
I I
|

,,,,,,,,,,,,,,,

* According to their type, glossary
items can be used within all

other artefacts, e.g. for use case
descriptions, software requirements
and the naming of classifier.

I |
Software i Specificaon | T~~~ "ai* Textual Glossary
| | | L
Use Case Model | . Speci] Glossary ltem
i | ! -
«refiney N
‘ Actor }f*f«{ Use Case “— -=-F «{Soﬂware Reqwrement}{ Fto-ts 7
A A A & = ! T
: /
R | I
T i
— T
i
«realize» 1 1 «re‘al\ze» «realize» «realize» |
[I
]

Analysis Model

|
T
|
'
'
I
,,,,,, P
i
'
I
I

* Implicit traceability links are
references between two model
elements. They have no further
properties and no direction.

o
oy
17
a
|
|
I
I
|
I
I

Use Case Realization

I
- Relationship | | 3
| Architecture Description
‘
]

I
1 «refine» «refine»

|
Design Model
i

! |
- Relationship '

|
[ommen |

«verify»

,,,,,, Use Case Realization

Test Model

77777777 Implicit Traceability Link**
Implementation Artifact Ll

Fig.9. Traceability Links between Artefacts of Requirements Analysis, Object-
Oriented Analysis and Design

Activities of Implementation. The design model is transformed into exe-
cutable code during implementation. If it is possible to generate the source code
automatically or a developer has to implement it, depends on the level of detail
of the design model. If the source code is generated automatically, no additional
traceability is necessary. The used tool usually offers all functions necessary to
follow a design object into implementation. If a developer is doing the transfor-
mation manually, it is possible to use implicit traceability by consistent naming
of the implementation objects otherwise explicit traceability links have to be
used. Traceability links are stored in the source code as annotations.

Flow Description by Activity Diagrams and State Machines. Activity
diagrams and state machines allow the modelling of processes without a prede-
fined structure of the system. Activity diagrams are especially used to describe

flows, e.g. use cases, information flows between use cases (as interaction diagram)
or methods and algorithms in the design model. State machines allow to model
reactive objects, like classes, use cases, subsystems or whole systems. Both di-
agram types can be used in various situations within the development process,
that’s why they are discussed separately.

If an activity diagram or a state machine is used to describe a use case, a class
or another model element, then both, the diagram and the model element have to
be connected by an explicit traceability link of the type «refine». Alternatively,
a consistent naming of the diagrams and the corresponding model element can
be used for implicit traceability.

3.5 Tailoring of the Traceability Model

The introduced traceability links are summarized in Fig. 9. The presented trace-
ability model has been developed based on experiences, exploration of the UP
and best practices in software engineering. The traceability links allow following
essential development activities. However, tailoring is possible and sometimes
necessary depending on the complexity of the project, the expected results by
using traceability and the available resources to establish traceability. There are
two possible ways to tailor the traceability model to meet special needs:

1. omitting or adding traceability connections of the model and
2. enhancing or decreasing the level of granularity of defined links.

The first point is reasonable in the case that at the same time corresponding
development activities are omitted or added. Examples for such scenarios are:

— software development without object-oriented analysis for very small and
short-living projects or
— requirements analysis without feature definition.

The second point, the change of the level of granularity, refers in particular
to traceability links between use cases and analysis objects and between analysis
and design objects. Here a high number of traceability links has to be established,
but at the same time a higher level of granularity can support the developer with
valuable information, e.g. if traceability links between use cases and analysis
classes are used. It is possible to connect artefacts with a higher or lower level of
detail at both sides of the traceability link, then described in our model before. In
the case of use cases, more detail means to link parts of the use case descriptions
and less detail means to link to features instead of use cases. For analysis classes
more detail means to connect to methods and attributes and less detail means to
connect to the package, which contains the class. Figure 10 shows three examples
of possible traceability links. The level of detail is rising from left to right.

It has to be pointed out, that while using a higher level of detail, the trace-
ability links of fewer detail are included implicitly. That means by connecting a
use case action with an operation of an analysis class, there is also an implicit
connection between use case and class.

In principle it is possible to increase or lower the level of detail only at one
connection side, but without real advantage because the resulting information is
not more precise. An advantage is only reached by a corresponding change on
both sides of the connection.

é‘asic Flow
1. Action1
2. Action2

« rea'hze > «realize»

Class1
Class1 -Attribut1
-Attribut2
~{+Operation1()
+Operation2()

Fig. 10. Example of the Level of Traceability between Use Cases and Analysis Objects

3.6 Verification of Traceability Links

Defined traceability links have to be verified for completeness and correctness.
Only thus the usability can be assured and a decay of traceability information
after changes of the connected models can be avoided. In the following rules for
validation are defined. Presently this set of rules is a first step for validating
only the pure existence of traceability links. For reaching this aim the analysis
of terms used in identifiers, the evaluation of relations in the class model or the
analysis of use case descriptions is necessary. E.g. one of the rule set introduced
in the list below is: each use case has to be realized by at least one analysis
class. This rule verifies the existence of at least one traceability link between
both model elements. But it is not sufficient for the verification of correctness.
Approaches for further validations offer the usage of terms in the model and the
validation of plausibility between diagrams. For example, the analysis of terms
means to search for glossary items of type object in the use case description
and try to relate them to the identifier of the linked analysis classes and their
attributes. Differences between both should lead to a notice for the developer.

Plausibility check between different diagrams means, that for each use case
triggered by an actor, an analysis class of type interface has to be defined. An-
other case considering use case realizations, the classes of all instances within
the use case realization have to be linked to the use case, because they realize
it. In the Table 3 the so far known rules are listed.

While applying the defined rules, one has to keep in mind that the UP is an
incremental and iterative process. That means these rules will raise warnings as
long as the model is not fully completed. However it is possible to check all chains

of artefacts to the last existing artefact and all loose artefacts. An example for
a loose artefact is a use case, which is realized by an analysis class, but does not
refine any feature. This should lead to a warning for the developer.

The rule set is going to be expanded during the next steps of the project
towards powerful support for developer.

Table 3. Verification Rules for Traceability Links

Need — «realize»— Feature (m:n)

1.|Each need is realized by at least one feature.

2.|Each feature is realizing at least one need.

Feature «— «refine»— Use Case (m:n)

1.|Each feature is refined by at least one use case.

2.|Each use case is refining at least one feature.

Use Case/Actor-Assoc. < «refine»— Interf. Descript. (m:n)

1.|Each association between a use case and an actor is

refined by at least one interface description.

2.|Each interface description is refining at least one

association between use case actor.

Actor — — — — — Use Case (m:n)

1.|Each actor is associated to at least one use case.

2.|The associated actor(s) are the same as the actors

used in the description of the use case.

Use Case «— «refine»— Suppl. Software Requirement (m:n)

1.|Each software requirement (non-functional requirement,
constraint) is refining at least one use case.

Use Case/Suppl. Softw. Req. «— «verify»— Test Case (m:n)

1.|Each software requirement is verified by at least one Test Case.

2.|Each Test Case is verifying at least one use case or software requirement.

Glossary — — — — — DOM (1:0,1)

1.[Each domain object is defined in the glossary.

Use Case «—«realize»y— Analysis Class (m:n)

1.|Each use case is realized by at least one analysis class.

2.|Each analysis class is realizing at least one use case.

Use Case «—«realize»— Use Case Realization-Analysis (1:n)

l.lEach use case realization is realizing one use case.

4 Related Work

A comprehensive description of research topics, results and open issues in the
field of traceability was given in a former publication [11]. In this paper according
to the specific topic, three studies concerning traceability frameworks has to be
pointed out in particular.

Based on the analysis of industrial software development projects Ramesh
and Jarke [7] define two metamodels for traceability. The authors differentiate
low-end and high-end users of traceability. Correspondingly they explain a sim-
plified and a full version of their metamodel. Further they give a predefined
standard set of link types. The authors focus especially on project management
and organizational needs of traceability. They do not give answers to the problem
how traceability should be established in analysis and design.

Spence and Probasco [4] discuss several alternatives for traceability between
requirements. The paper is focused on the UP. They do not give answers to the
question how the transition to analysis and design and the on-going work should
be traced.

Letelier [3] offers a metamodel for requirements traceability in UML-based
projects. He gives an example of the usage in a UP project. The author is focusing
on a general traceability model and gives advise on how to customize it using
UML mechanisms. By keeping the model general useable, it is not possible to
define rules and activities for the creation, verification and the update of links,
which could be carried out (semi)automatically by a tool.

5 Conclusions and Future Work

In this paper the general activities of a software process model have been en-
hanced by the establishment of traceability links to reduce the effort and to
enable tool support. Traceability links improve the maintainability and sup-
port evolutionary development processes e.g., by recovering former development
activities, especially for the case of changing requirements. A model for trace-
ability links has been introduced which can be tailored if necessary. Based on
the development activities and artefacts, a set of rules for the verification of the
traceability links has been developed.

As a part of ongoing work, the developed traceability link model is currently
completed and refined towards a complete coverage of the methodical activities,
to facilitate appropriate tool support for the creation, update and verification of
the traceability links with a minimum interaction with the developer. For refining
the model, architectural development methods like Qasar [12] are investigated
and integrated.

Other development methods and processes like Fusion [13] and Refactoring
[14] are currently investigated aiming towards a generally usable traceability
model. For the realization of tool support we have started the implementation
of plug-ins for existing UML tools. The plug-ins will support the developer by
the establishment of traceability links in the background while modelling and
by maintaining the consistency of existing links during changes of artefacts.
However, a consequent application of the rules of the development method in all
modelling activities constitutes a precondition for such a support.

Acknowledgments This work is partly funded by a grant from the German Re-
search Foundation (Deutsche Forschungsgemeinschaft DFG) under id Ph49/7-1.

References

1. Riebisch, M.: Supporting evolutionary development by feature models and trace-
ability links. In: Proceedings 11th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS2004), Brno,
Czech Republic (May 2004) 370-377

2. Arlow, J., Neustadt, I.: UML 2 and the Unified Process Second Edition: Practical
Object-Oriented Analysis and Design. Addison-Wesley (2005)

3. Letelier, P.: A framework for requirements traceability in UML-based projects. In:
Proceedings of 1st International Workshop on Traceability in Emerging Forms of
Software Engineering, Edinburgh, UK (September 2002)

10.

11.

12.

13.

14.

Spence, 1., Probasco, L.: Traceability strategies for managing requirements with
use cases. Rational Software White Paper TP166, IBM (2000) http://wuw-306.
ibm.com/software/rational/info/literature/whitepapers. jsp.
Cleland-Huang, J., Chang, C.K., Christensen, M.J.: Event-based traceability for
managing evolutionary change. IEEE Trans. Software Eng 29(9) (2003) 796-810
Weilkiens, T.: Systems Engineering mit SysML/UML. dpunkt.verlag (2006)
Ramesh, B., Jarke, M.: Toward reference models of requirements traceability. [EEE
Trans. Software Eng 27(1) (2001) 58-93

Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison Wesley, Reading, Massachusetts (June 1992)

Rupp, C., et al.: Requirements-Engineering und Management. Carl Hanser Verlag
(2007)

Cockburn, A.: Using goal-based use cases. JOOP 10(7) (1997) 56-62

Maeder, P., Riebisch, M., Philippow, I.: Traceability for managing evolutionary
change. In: Proceedings of 15th International Conference on Software Engineering
and Data Engineering, Los Angeles, USA, ISCA (2006) 1-8

Bosch, J.: Design and Use of Software Architectures : Adopting and evolving a
product-line approach. Addison-Wesley (2000)

Coleman, D.: Object-Oriented Development: The Fusion Method. Prentice-Hall
(1994)

Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley
(1999)

