
Recommending Auto-Completions for Software

Modeling Activities

Tobias Kuschke, Patrick Mäder and Patrick Rempel

Department of Software Systems, Ilmenau Technical University
{tobias.kuschke|patrick.maeder|patrick.rempel}@tu-ilmenau.de

Abstract. Auto-completion of textual inputs benefits software develop-
ers using IDEs and editors. However, graphical modeling tools used to de-
sign software do not provide this functionality. The challenges of recom-
mending auto-completions for graphical modeling activities are largely
unexplored. Recommending auto-completions during modeling requires
detecting meaningful partly completed activities, tolerating variance in
user actions, and determining the most relevant activity that a user wants
to perform. This paper proposes an approach that works in the back-
ground while a developer is creating or evolving a model and handles
all these challenges. Editing operations are analyzed and matched to
a predefined but extensible catalog of common modeling activities for
structural UML models. In this paper we solely focus on determining
recommendations rather than automatically completing an activity. We
demonstrated the quality of recommendations generated by our approach
in a controlled experiment with 16 students evolving models. We recom-
mended 88% of the activities that a user wanted to perform within a
short list of ten recommendations.

1 Introduction

Automating tasks of a software engineering process is a state-of-the-art way to
increase the quality of a software product and the e�ciency of its development.
Auto-completion of textual inputs, as it exists in source code editors of modern
integrated development environments, supports developer’s work without the
need to interrupt code writing and triggering menu functions, making its usage
very e�cient.

However, when designing a system in a graphical modeling environment
no such support is currently available. The challenges that arise when recom-
mending auto-completions for such modeling activities are largely unexplored.
Though, there are plenty of opportunities for supporting recurring activities
during model-driven architecture and design. For example, Arlow and Neustadt
[1] describe typical activities that have to be carried out when refining an ini-
tial UML analysis model into a design model for a system. Furthermore, many
of Fowler’s [2, 3] well-known source code refactorings impact the structure of a
system and can as well be executed on a class model perspective of a system.

Recommending relevant auto-completions during graphical modeling requires
handling challenging aspects accompanied with the problem such as:

patrickr

patrickr
Published in Proceedings 16th International Conference on Model-Driven Engineering Languages and Systems (MODELS 2013), Miami, FL, USA.

patrickr
@INPROCEEDINGS{conf/models/kuschkeMR13, title={Recommending auto-completions for software modeling activities},
 author={Kuschke, Tobias and M{\"a}der, Patrick and Rempel, Patrick},booktitle={Model-Driven Engineering Languages and Systems},
 pages={170--186},year={2013},publisher={Springer},doi= {10.1007/978-3-642-41533-3_11}}

Patrick Mäder
Kuschke, Tobias, Patrick Mäder, and Patrick Rempel. "Recommending auto-completions for software modeling activities." Model-Driven Engineering Languages and Systems. Springer Berlin Heidelberg, 2013. 170-186.

C1 Detect Partly Performed Activities. Complex modeling activities are de-
scribed by a set of editing operations with mutual dependencies. Detecting
partly performed activities requires to match arbitrary incomplete subsets of
editing operations while tolerating dependencies to unavailable information.

C2 Tolerate Modeling Variances. Modeling activities need to be detected in a
variety of combinations of editing operations establishing the same activity.
Not only can di↵erent orders of the same operations establish an equal activ-
ity, but di↵erent types and counts of operations can also establish the same
activity.

C3 Be Unintrusive.A successful approach requires processing without noticeable
system response delays.

C4 Recommend Valid and Relevant Activity Completions. Detected partial ac-
tivities are not necessarily completable, i.e., not all are valid as recommen-
dations. Furthermore, high numbers of valid recommendations have to be
reduced to a limited set of most relevant completions for being useful.

C5 Be Extensible for New Activities and Platforms. A successful approach needs
to be extensible to new activities and adaptable to other development tools.

We present an approach that handles these five challenges. The focus of
this paper is determining and ranking relevant recommendations. In a follow-up
publication we will focus on the auto-completion of a recommendation accepted
by a user. Our paper is organized as follows. Section 2 reviews relevant related
work on recognizing modeling activities, recommending modeling activities, and
on auto-completion of modeling activities. In Section 3 we introduce our catalog
of common modeling activities for structural UML models. Our approach for
computing relevant recommendations of activity completions is introduced and
discussed in Section 4. In Section 5 we evaluate the approach and assess its
capabilities, followed by Section 6 where we discuss the results. Finally, Section
7 concludes our work and outlines future research.

2 Related Work

Our approach consists of three main stages: i) recognizing partial modeling ac-
tivities, ii) recommending modeling activities, and iii) auto-completing modeling
activities. In the following, we discuss previous research in these three areas.

Recognizing Modeling Activities. Sun et al. [4, 5] suggest model transformations
based on pattern matching. A repository holds model transformation patterns,
which can be extended through live-demonstrations of the user. Developers can
select these patterns when modeling. The system then calculates and presents
all automatically executable transformations where pattern preconditions match
the current state of model objects. This approach provides a simple and com-
fortable way to define transformation patters and to share them with others.
However, detecting partly executed transformations for automatic completion is
not supported. Furthermore, the performance and usability of the approach is
limited due to very high numbers of occurring transformation pattern matches.

Filtering and ranking matched transformations is not considered. The Eclipse
framework VIATRA2 by Rath et al. [6] presents another approach for live model
transformation. VIATRA2 can incrementally synchronize a target model to edit-
ing operations carried out on a source model. The authors employ an e�cient
RETE-based pattern matching technique [7]. Their transformation language sup-
ports incremental transformation rules as well as complex graph transformations.
While this language could be used to express modeling activities, VIATRA2 is
not designed to detect partly performed states of activities. However, our ap-
proach uses similar concepts for the recognition of partly performed activities.

Recommending Modeling Activities. Several authors developed approaches to
assist users of development tools with recommendations. Murphy-Hill et al. [8]
recommend Eclipse commands. The applied data mining algorithms are e�-
cient for recommending single commands, but are unsuitable for recognizing
multi-step modeling activities. Recommendation ranking is based on user his-
tory, which could also be beneficial for modeling activities once long-term context
information is available. Strathcona by Holmes et al. [9] recommends source code
examples for using APIs. The user selects a source code fragment within Eclipse
and starts the tool. Structural and context facts are extracted from the code
and sent to a server. Based on four predefined heuristics the server matches the
queried fact set to the stored examples trying to find structurally similar source
code. The 10 most relevant examples are returned and presented.

Auto-Completion of Modeling Activities. Forster et al. [10] proposed WitchDoc-

tor for detecting and completing source code refactoring’s while observing de-
velopers writing source code. Their approach matches editing operations of the
code to a list of refactoring’s with every keystroke of a developer. Upon a match,
the complete refactoring is being calculated and displayed as gray-colored sug-
gestion within the editor. Similar to our approach, the authors capture atomic
editing operations and match them against predefined patterns of operation se-
quences. However, the authors do not discuss how to extract valid and relevant
recommendations within a set of detected activities. This becomes crucial when
recommending a number of di↵erent modeling activities consisting of similar
editing operations. Mazanaek et al. [11, 12] studied auto-completions for model
and diagram editors in general. Based on graph grammars, their approach cal-
culates all possible completions for incomplete model graphs. Although, the ap-
proach recommends correct structural completions for the current graph state, it
does not support the completion of complex modeling activities within structural
UML models. As such activities contain specific conditions regarding structural
aspects and object property values it would be a di�cult task to express them
by a general graph grammar. Furthermore, it is impracticable to calculate and
present all completions for a complex structural UML model. Sen et al. [13]
propose a similar approach. A domain-specific modeling language and a partial
instance of an appropriate model are transferred into an Alloy constraint model.
This Alloy model is taken as input for a SAT solver that generates possible
completed models. The system is triggered by the user and presents recom-

mendations in graphical form. It is mainly designed to support small modeling
languages and computes its results within seconds up to minutes. The approach
shows similar limitations as the previous. Furthermore, there are approaches [14,
15] that deal with user assistance in keeping models consistent and well-formed.
Similarly, these approaches also calculate editing operations that are presented
to the user. In contrast to our work, the focus of those works is changing a model
in a minimal way in order to fix local inconsistencies rather than predicting a
user’s intent in performing complex modeling activities.

Summarizing, prior approaches that focused on recommending or on auto-
completing activities within textual or graphical development environments all
show limitations concerning the challenges identified in Section 1. In this paper,
we present a novel approach for recommending valid and relevant completions
of structural UML modeling activities while they are performed by a developer.
Our contributions comprise the following aspects: 1) detecting partly performed
complex modeling activities while observing developers editing a model, 2) toler-
ating variable editing operation combinations that establish the same activity, 3)
recommending relevant modeling activity completions with every model editing
operation that is carried out by a developer, 4) filtering and ranking the most
relevant activity completions from a large number of possible recommendations,
5) processing without noticeable system response delays, 6) being extensible for
defining new complex activities, and 7) being platform-independent to support
di↵erent editors especially industrial modeling tools like Sparx Enterprise Ar-
chitect [16] and IBM Rational Software Architect [17].

3 Modeling Activities and Illustrating Example

The basis for our approach is a catalog of predefined modeling activities for struc-
tural UML models that we created for our traceMaintainer approach [18, 19].
traceMaintainer recognizes meaningful modeling activities within incremental
editing operations to traced UML models and semi-automatically updates im-
pacted traceability relations. The activity catalog has been used and improved
during several studies and experiments. Activities in the catalog are declared as
patterns AP = (ap

1

, . . . , ap
n

) that describe a set of expected editing operations
EO = (eo

1

, .., eo
i

) each. The catalog comprises a set of 19 activity patterns with
67 alternative editing operation sequences to carry them out. These patterns
cover 38 modeling activities. Examples of defined activity patterns are:

– Replacing an association between two classes by an interface realization (ap
6

)
– Extracting an attribute into an associated class (ap

13

)
– Specializing an element inheriting to an sub element (ap

17

)

We introduce a simple modeling example and use it throughout the paper.
A developer wants to enhance a small embedded system containing a Control

Unit and a Communication Adapter for sending and receiving messages (see
Figure 1, left). As part of the enhancement, two types of communication proto-
col shall be supported by the Communication Adapter : universal asynchronous

receiver/transmitter (UART) and serial peripheral interface (SPI). Furthermore,
an exchanged message shall identify its sender and receiver allowing adding ad-
ditional communicating units. A possible realization is shown in Figure 1 (right).

Controller

Communication

«use»

«interface»
ICommunication

+ SendMessage()

+ ReceiveMessage()

*

Message

- SenderID

- ReceiverID

- TimeStamp

- MessageType

- PayLoad

UART SPI

Control UnitControl Unit

- message

1

1

Adapter

+ SendMessage()

+ ReceiveMessage()
+ SendMessage()

+ ReceiveMessage()

Communication

Adapter

eo1

eo2

eo3

eo4 + eo5

eo6

eo7

Fig. 1. Model of the illustrating example. On the left hand side the initial model state
is show, while the right hand side depicts a possible enhancement.

As first step, the developer converts the association between Communication

Adapter and Control Unit into an interface. Figure 2 shows from left to right
the temporal progress of performed editing operations to implement the desired
interface. First, she adds a new interface ICommunication (eo

1

). One minute
later, she adds a realization dependency between Communication Adapter and
the new interface ICommunication (eo

2

). Another minute later, she adds a use-
dependency between Control Unit and the new interface ICommunication (eo

3

).

t0 - 10 time [min]t0 - 2 t0t0 - 16t0 - 18t0 - 20
...

7 – ap6

8 – ap3

9 – ap4
...

11 – ap13

12 – ap5
...
20 – ap17
...

 (eo1) Add

Interface

t0 - 1

(eo2) Add

Realization

(eo3) Add

Use Dependency

(eo4) Add

Class
(eo5) Modify

Class

(eo6) Add

Association

(eo7) Add

Class

Fig. 2. Visualization of incoming events for the editing operations of the illustrating
example, there temporal order, and a subset of matched activity patterns.

After a five minute break for planing the next step, the developer decides
to extract the attribute message from the Control Unit into a separate class in
order to extend it with additional properties. She starts this activity by adding
a new class tot the model (eo

4

). At this time she gets interrupted by a phone

call that takes 15 minutes. She continues by modifying the new class (eo
5

) and
by associating it to the Control Unit class (eo

6

). Eventually, she creates a new
class UART (eo

7

). Our example stops at this point, which we will refer to as t
0

in the remaining text.

4 Approach

In this paper, we propose an approach for recommending valid and relevant
completions of modeling activities for structural UML models while a developer
is changing a model. In order to address the challenges identified in Section 1,
we propose the following four step process. Each step is discussed in detail in
the following four subsections.

Step 1: Recognizing partly performed modeling activities. While a developer is
modeling within a tool, each editing operation is triggering an event con-
taining detailed information of the change. Incoming events are matched
against predefined activity patterns AP in order to detect partly per-
formed modeling activities. The resulting set of activity candidatesAC =
(ac

1

, . . . , ac
n

) serves as input to the following process step.
Step 2: Filtering invalid activity candidates. All activity candidates that cannot

be completed within the user’s model are treated as invalid and filtered
from the set AC.

Step 3: Ranking activity candidates by relevance. The filtered set AC is then
ranked in relation to the relevance of each candidate for the user. Rele-
vant are activities that the user wants to perform. Three ranking criteria
are used to estimate relevance.

Step 4: Presenting recommendations. Finally, the filtered and ranked activity
candidates in AC are reduced to a comprehensible number of recom-
mendations and presented within the modeling environment.

4.1 Step 1: Recognizing Partly Performed Modeling Activities

We previously developed a traceability maintenance approach called traceMain-

tainer [19]. By recognizing modeling activities within incremental editing op-
erations to traced UML models, traceMaintainer performs required updates to
impacted traceability relations semi-automatically. While the goal of recogniz-
ing activities is similar to the approach presented here, there are fundamental
di↵erences in terms of required event processing. The need for matching partly
performed activities required us to adopt a more advanced event processing.
While our previous activity patterns contained designated trigger operations
that had to occur in order to start the matching process, we required for this
approach a mechanism that could match activity patterns starting from the first
incoming event that contributed to them. Within the following paragraphs we
introduce the redesigned recognition process.

First, each editing operation triggers an event of type add, delete, or modifiy,
which carries the properties of the edited model element (see Figure 3, left).

Second, events are matched against a set of predefined activity patterns AP .
Each activity pattern ap

x

defines a set of expected editing operations EO =
(eo

1

, .., eo
i

) that have to be performed in order to complete a modeling activity.
The definition of an expected editing operation comprises conditions that have
to be fulfilled by an incoming event to be matched. For example, the event for
editing operation eo

5

in Figure 3 (left) would be matched by the definition E3 in
the activity pattern (right), if all conditions can be evaluated to true. Thus, the
completion of an activity would be recognized if a sequence of incoming events
matches all editing operations EO of an activity pattern.

We decided to implement our matching process on a RETE-based rule engine
[7]. This is a well-known technique for the kind of problem we had to solve.
RETE translates and merges all complex pattern descriptions into a network
of condition checking nodes. The technique reaches high execution performance
for large numbers of received events, because checking results are temporarily
cached in the network. Paschke et al. [20] published a survey on rule-based
event processing systems and identified the freely available RETE-based Drools
platform [21] as being very e�cient for complex event processing (CEP). Drools’s
implementation is mature and the rule declaration language is highly expressive.
Furthermore, the platform allows to retract inserted events and to output all
matched subsets of events.

rule "ap13"
 when
 $E1: Event(Type == "del", Element == $AT)
 $AT: Element(Type == "attribute")
 $PA: Element(ID == $AT.Parent)

 $E2: Event(Type == "add", Element == $CLA)
 $CLA: Element(Type == "class", Parent == $PA.Parent)

 $E3: Event(Type == "postmod", Element == $CLB)
 $CLB: Element(Type == "class", ID == $CLA.ID, Name == $AT.Name)

 $E4: Event(Type == "add", Element == $AS)
 $AS Element(Type == "association",

 (End1 == $PA.ID && End2 == $CLA.ID) || (End2 == $PA.ID && End1 == $CLA.ID))

expected editing
operations

activity pattern: “extracting an attribute into an associated class“

is matched by

issued event for editing
operation eo5

end
insertLogical(new ActivityCandidate());

then

postmod(
 Type = “class“,
 Name = “Message“,
 ID = [...],
 Stereotyp = “-“,
 Parent = [...],
 …)

Fig. 3. Event for the editing operation eo5 of the illustrating example (left) and the
Drools rule declaration for activity pattern ap13 (right).

To integrate Drools in our solution, the activity patterns of AP with all their
possible alternatives had to be declared using Drools’s rule language. Figure 3
(right) shows a simplified Drools rule matching the ap

13

activity pattern. The
definition of an expected editing operation eo

x

is separated into conditions for
a matching event and for the edited model element. Cross-references between
element properties are highlighted in bold. In order to recognize partly performed
activities, all possible permutations of the expected editing operations in EO
are declared within separate rules. Each fully matched Drools rule generates an
activity candidate ac

x

in AC, which defines the remaining editing operations for
completing the modeling activity. As di↵erent modeling activities can contain

similar definitions of editing operation it is not possible to declare these activity
patterns without partly overlapping each other, i.e., incoming events can be
matched to multiple patterns in AP . Furthermore, an activity pattern can be
recognized multiple times, because the RETE algorithm matches all possible
event combinations that fulfill the pattern’s conditions. Accordingly, the raw
output AC of the activity recognition step requires post-processing steps to
generate relevant recommendations for a user. In the second column of Table
1 we show the raw output AC produced for our illustrating example. A total
number of 21 activity candidates has been matched based on the last triggered
event at t

0

and all previously incoming events.

4.2 Step 2: Filtering Invalid Activity Candidates

Recommended activity candidates need to be completable. We call a candidate
that fulfills this condition “valid”. To explain what a valid activity candidate
is, we take a closer look at the recognized activity pattern candidate ap

5

in our
example (see Figure 2). The ap

5

activity pattern describes the transformation
of an association with association class into a model structure consisting of a
class and two associations. The transformation can be realized by adding a new
class, by transferring all properties of the association class into the new class,
by associating the class to both ends (classes) of the original association, and
finally by deleting the original association including the connected association
class. Figure 2 shows that activity candidate ac

5

has got two allocated events
Add Class and Add Association. Two more editing operations would be required
to complete the activity, the deletion of the original association with association
class and the creation of another association. Figure 1 shows the final state of
our model and it is visible that no association with association class is contained.
That means that activity candidate ac

5

cannot be completed, it is invalid and
will be filtered.

To realize the filtering we derive model queries from activity candidates that
are applied to the repository of the modeling environment. These queries verify
the existence of model elements required to complete a partly matched activity.
Queries are executed for all activity candidates after each incoming event on
the current state of the model. The concrete content of a query depends on the
completeness of an activity candidate as each event allocation may add new
conditions related to the required model state. Similarly, each editing operation
may validate or invalidate existing activity candidates. Accordingly, queries for
all activity candidates are derived and executed upon each incoming event.

4.3 Step 3: Ranking Activity Candidates by Relevance

The previous filtering step results in a set of valid activity candidates. In order
to present useful recommendations, activity candidates need to be ranked ac-
cording their relevance for a developer. This ranking requires criteria that are

able to characterize the relevance of an activity candidate. Based on available in-
formation about activity candidates, on related work and on our own industrial
modeling experiences, we identified three ranking criteria.

↵
ac

– Average age of allocated events of an activity candidate
�
ac

– Average period between allocated events of an activity candidate
�
ac

– Completeness of an activity candidate

We do not claim that these three criteria are the only possible, but we will
demonstrate their e↵ectiveness within the evaluation section. It will be a future
exercise to further explore the area for other criteria. The following subsections
describe each criterion in detail and demonstrate their influence on the ranking
of activity candidates. Table 1 shows the ranking results after performing edit
operation eo

1

– eo
7

in the prototype. For our example we know the three carried
out modeling activities and highlighted them within the columns.

Table 1. Visualization of the influence of the identified ranking criteria on the set
of activity candidates AC(t0) after executing editing operation eo1 to eo7 (see Figure
1) in the prototype. The second column shows the order of activity candidates as
delivered by the rule engine. The third to fifth column rank these candidates based on
a single ranking criterion each. Finally, column six shows the resulting list ranked by
combining all three criteria. Cells within the table reflect the activity pattern type ap

of a recognized candidate ac and the value calculated for the criterion.

Ranked based on

Rank Non-ranked ↵

ac

�

ac

�

ac

↵

ac

+ �

ac

+ �

ac

1 ap3 ap3 (1.00) ap5 (1.00) ap6 (0.75) ap5 (0.87)

2 ap4 ap4 (1.00) ap6 (0.99) ap13 (0.75) ap13 (0.70)

3 ap10 ap10 (1.00) ap13 (0.34) ap10 (0.50) ap6 (0.69)

4 ap13 ap13 (1.00) ap3 (0.00) ap17 (0.50) ap5 (0.52)

5 ap17 ap17 (1.00) ap4 (0.00) ap10 (0.50) ap10 (0.38)

6 ap5 ap5 (1.00) ap10 (0.00) ap17 (0.50) ap17 (0.38)

7 ap6 ap7 (0.98) ap13 (0.00) ap5 (0.50) ap7 (0.37)

8 ap3 ap5 (0.96) ap17 (0.00) ap5 (0.50) ap3 (0.31)

9 ap4 ap13 (0.71) ap5 (0.00) ap7 (0.50) ap4 (0.31)

.

11 ap13 ap3 (0.20) ap4 (0.00) ap17 (0.50) ap5 (0.31)

.

15 ap7 ap6 (0.03) ap7 (0.00) ap5 (0.25) ap17 (0.13)

.

20 ap17 ap17 (0.00) ap17 (0.00) ap13 (0.25) ap13 (0.06)

21 ap5 ap5 (0.00) ap5 (0.00) ap5 (0.25) ap5 (0.06)

Average age of allocated events. Based on our experience, we assume that a
human developer can only work on a limited number of tasks in parallel. Thus,
modeling is rather continuous and started modeling activities will be completed
within a restricted period of time. Accordingly, it is more likely that a developer
is actually working on a younger activity candidate than one that has been
recognized a longer time ago. To address this fact, we define the current age of

an event e
y

as the time span between the occurrence of the last triggered event
t
0

and its own occurrence t
e

y

:

a
e

y

(t
0

) = t
0

� t
e

y

. (1)

The average age of all n allocated events of an activity candidate ac
x

is deter-
mined as:

ā
ac

x

(t
0

) =

P
(a

e1 , . . . , aen)

n
. (2)

Let A = (ā
ac1 , . . . , āacm) be the set of average ages for all m activity candidates

at t
0

. The ranking criterion ↵
ac

of an activity candidate ac
x

is defined as:

↵
ac

x

(t
0

) = 1� ā
ac

x

�min(A)

|max(A)�min(A)| . (3)

The formula means that an increasing average age of an activity candidate de-
creases its likeliness of being relevant. Values of ↵

ac

are normalized on a scale
between zero and one. The candidate with the smallest average age receives a
value of 1.0, while the one with the largest average age receives a value of 0. This
is done to assess proportions between activity candidates rather than absolute
values to ensure comparability over time. The influence of ↵

ac

on the ranking
for the our example is illustrated in Table 1.

Average period between allocated events. Not only the average age but also the
period between the allocated events influences the relevance of an activity candi-
date. We assume that events establishing the same modeling activity more likely
occur within a limited period of time. Even if the completion is interrupted, see
the phone call in our running example (Section 3), most editing operations are
carried out as a contiguous sequence. Thus, an activity candidate is more likely
to be irrelevant if its allocated events occurred with long periods in between. To
assess a candidate ac

x

for this criterion, we calculate the average period of its
allocated events as the time span between the first (t

first

) and the last (t
last

)
allocated event divided by the total number of allocations n:

p̄
ac

x

=
t
first

x

� t
last

x

n
(4)

Let P = (p̄
ac1 , . . . , p̄acm) be the set of average periods for all m activity can-

didates at t
0

. The ranking criterion �
ac

of an activity candidate ac
x

is defined
as:

�
ac

x

= 1� p̄
ac

x

�min(P)

|max(P)�min(P)| (5)

An increasing average period for an activity candidate decreases its likeliness
of being relevant. Values of �

ac

are normalized on a scale between zero and one.
The candidate with the smallest average period in the set of current activity
candidates receives the value 1.0, while the one with the largest average period
receives the value 0. The influence of �

ac

on the ranking for the example is
illustrated in Table 1.

Completeness. Activity candidates are detected by comparing events against
specified activity patterns. We assume that the relevance of detected activity
candidates increases with each additional allocated event, i.e., with its complete-
ness. The completeness of an activity candidate ac

x

is assessed by calculating
the ratio of its currently allocated events (n

alloc

) to the total number of expected
editing operations (n

total

) establishing the corresponding activity:

�
ac

x

=
n
alloc

x

n
total

x

(6)

The influence of �
ac

on the ranking for the example is illustrated in Table 1.
Figure 2 shows the completeness of recognized activities and that the activity
candidates ap

6

and ap
13

should be ranked to the top of the list regarding that
criterion.

Combining ranking criteria. Finally, the described ranking criteria need to be
combined into an overall probability value for each activity candidate. Without
history data about the interplay of the identified ranking criteria, a possible
way for combining single criteria is to average them, treating each criterion
as equally important. The last column of Table 1 shows this probability for our
example. However, in order to maximize the quality of recommendations, history
data should be used to compute an optimized statistical model that treats the
influence of the ranking criteria individually. This approach has been used for
the computation of our experimental results in Section 5.

4.4 Step 4: Presenting Recommendations

By filtering (Step 2) and ranking (Step 3), an ordered list of relevant activity
candidates has been created. Although, candidates representing relevant activ-
ities are ranked topmost, the set likely contains many additional valid but less
relevant entries. Reed found [22] that humans can only comprehend a limited
number of recommendations e↵ectively. Hence, it is necessary to limit presented
recommendations to a useful number. Holmes et al. [9] also identified that need
and refer to a list of ten entries as useful. For the computation of our exper-
imental results (see Section 5), we follow that suggestion, but also explore a
more sophisticated method that takes into account the overall probability of
recommendations.

5 Evaluation

We evaluated our approach according to the challenges C1 to C4 described in
Section 1. Challenges C1 and C2 require the ability to recognize partly performed
activities, which forms the basis of our approach. Thereby, the system has to
handle user variability such as di↵erent orders of editing operations to perform
the same modeling activity. We evaluated the tolerance of modeling variations
of our approach within Experiment 1. A crucial aspect of user acceptance for

a recommendation approach is its performance. We evaluated the performance
of our approach with Experiment 2, which refers to challenge C3. Challenge C4
addresses the usefulness of generated recommendations. We evaluated this aspect
within the extensive Experiment 3. The extensibility of our approach (Challenge
C5) was not evaluated for this paper. We are enhancing the recommender system
with auto-completion functionality within the ongoing research work and we will
demonstrate its usage on di↵erent platforms and with an extended catalog of
activity patterns as future work.

5.1 Experimental Setup

We implemented our recommender system as plug-in for the commercial mod-
eling environment Sparx Enterprise Architect [16]. The prototype embeds the
Drools 5.5 rule engine. All experiments were performed on a system with an
Intel i7 2.7GHz processor, 4GB RAM, and a 64-bit Windows Microsoft 7 OS.

Our experiment is using recorded data sets of an experiment with 16 subjects
that performed modeling tasks over a period of approximately two hours each.
The experiment was originally conducted to evaluate our traceMaintainer ap-
proach [19]. In the original experiment we were purely interested in the quality
and e�ciency of traceability maintenance possible for the modeling tasks per-
formed by a subject . However, we also logged all editing operations performed
by the subjects and use that data to evaluate our recommendation approach.

A medium size model-based development project of a mail-order system was
used. This project comprised various UML diagrams on three levels of abstrac-
tion: requirements, design, and implementation. Subjects had to perform three
maintenance tasks on the mail-order system. First, the system’s functionality
had to be enhanced to distinguish private and business customers and to handle
foreign suppliers. Second, the system layers view and data had to be extracted
into separate components. And third, the system’s functionality had to be en-
hanced to handle additional product groups and to categorize products according
to content categories. Tasks were described in general terms in order to acquire a
wide spread of di↵erent solutions. The experiment was performed by 16 computer
science students that were either in the fourth or fifth year of their university
studies. All students were taking a course on software quality and had advanced
experience in model-based software engineering and UML. The 16 acquired data
sets contained recorded events describing each performed editing operation. As
we kept the event notation consistent with our previous approach, data could
directly be used for our evaluation. All experimental material is available in [18].

5.2 Experiment 1: Modeling Variance Toleration

Experiment 1 was conducted to evaluate the toleration by the recognition part
of our approach for modeling variances in performing the same activity pattern.
The approach must recognize the same activity patterns within di↵erent per-
mutations of the same event sequences. Therefore, we replayed 100 randomly
generated permutations of the recorded events and compared the computed

recognition result with the original recognitions. To validate alternative ways
for executing activities, the experiment was conducted for all 16 di↵erent sub-
jects. All generated experiment results contained exactly the same set of activity
recognitions as their corresponding original, but in di↵erent orders according to
the permutation of events.

5.3 Experiment 2: Performance

We measured the execution time across all processing steps, i.e., from the oc-
currence of an event triggered by an editing operation to the fully presented
recommendation set within Sparx Enterprise Architect. This time is indepen-
dent of the model size but depends on the number of processed events and the
number of activity patterns defined in the catalog. We computed the average
execution time t̄

x

and the maximum execution time t
max

across all performed
editing operations of the 16 subjects for a number of 5, 10 and 19 defined pat-
terns. Results are discussed in Section 6:

t

mean

=
t̄1, . . . , t̄16

16
, t

mean5,10,19 = (143ms,XXXms,XXXms),

t

max

= max(t
m1, . . . , tm16) = 197ms

(7)

5.4 Experiment 3: Relevance of Recommendations

In this experiment we evaluated the relevance of generated recommendations for
the user. First, we determined for each editing operation that a subject had per-
formed all activity candidates that she/he started at this point and that she/he
completed during the remaining modeling session. These identified activity can-
didates comprised a golden master of relevant activities per editing operation of
a subject. We compared this golden master with the actual recommendations
of our approach and evaluated the relevance of recommendations with the aver-
aged common metrics recall, precision, and average precision. Mean recall (MR)
measures shown relevant recommendations in relation to all relevant recommen-
dations across all editing operations made by a subject. Mean precision (MP)
measures the amount of relevant recommendations in relation to all shown rec-
ommendations across all editing operations made by a subject. Finally, mean
average precision (MAP) measures the precision of recommendations at every
position in the ranked sequence of recommendations across all editing operations
of a subject. This metric evaluates the ranking performance of our approach.

We determined an optimized weighting function for the three ranking criteria
by performing a binominal regression based on our evaluation data (see Section
4.3). Due to the limited amount of subjects performing the experiment, we ap-
plied a leave-one-out cross-validation strategy [23] across the acquired 16 data
sets. We fitted 16 generalized linear models, every time using 15 out of 16 data
sets. These models were then used to rank the recommendations of the 16th data
set. Results are shown in Table 2. We applied three threshold strategies to cut
the list of available recommendations to a comprehensible number (see Section

Table 2. Relevance of computed recommendations for all subjects performing the
experiment measured as mean recall (MR), mean precision (MP), and mean average
precision (MAP) at three di↵erent thresholds (th)

th

max

= 10 th

max

= / th

max

= 10

th

prob

= / th

prob

= 0.02 th

prob

= 0.02

Subject MAP MR MP MAP MR MP MAP MR MP

1 100.00% 100.00% 13.40% 100.00% 100.00% 37.08% 100.00% 100.00% 37.08%

2 71.61% 98.82% 34.92% 71.84% 100.00% 33.51% 71.61% 98.82% 37.11%

3 65.55% 100.00% 48.06% 67.88% 89.56% 48.40% 67.88% 89.56% 48.40%

4 56.47% 62.02% 15.74% 45.55% 80.05% 16.42% 56.47% 62.02% 18.42%

5 55.59% 76.69% 11.83% 50.13% 86.72% 10.20% 55.59% 76.69% 12.19%

6 60.72% 99.34% 21.46% 65.33% 83.11% 15.19% 65.33% 83.11% 19.92%

7 82.15% 92.58% 12.83% 79.32% 93.75% 11.94% 82.12% 90.23% 14.30%

8 71.94% 100.00% 10.00% 71.94% 100.00% 10.10% 71.94% 100.00% 12.87%

9 60.45% 64.89% 17.31% 59.00% 77.43% 24.75% 66.45% 54.50% 22.88%

10 77.26% 100.00% 15.11% 77.26% 100.00% 17.74% 77.26% 100.00% 18.38%

11 77.40% 100.00% 12.14% 77.70% 98.60% 10.98% 77.70% 98.60% 14.78%

12 57.32% 52.87% 17.46% 49.24% 59.62% 25.15% 76.96% 31.20% 23.83%

13 89.84% 100.00% 17.81% 89.52% 96.88% 21.37% 89.52% 96.88% 25.91%

14 48.12% 61.22% 16.67% 41.20% 83.84% 14.04% 48.12% 61.22% 17.17%

15 97.74% 100.00% 16.76% 97.74% 100.00% 15.42% 97.74% 100.00% 18.78%

16 82.93% 100.00% 17.03% 82.93% 100.00% 24.41% 82.93% 100.00% 25.54%

Average 72.19% 88.03% 18.66% 70.41% 90.60% 21.04% 74.23% 83.93% 22.97%

4.4). Columns 2–4 show the three metrics for a fixed cuto↵ of 10 recommenda-
tions. Columns 5–7 show the metrics for a dynamic cuto↵ at probability 0.02.
Finally, columns 8–10 show the metrics for a cuto↵ at probability 0.02 or at 10
recommendations, whatever occurs earlier.

6 Discussion

In Experiment 1, we evaluated the tolerance of the approach for possible vari-
ations in a developer’s flow of editing operations. We found that we recognized
the same set of modeling activities across 100 permutations of the editing opera-
tions performed by each subject. This result shows that our event processing and
activity pattern matching implementation is independent of the order of events
and tolerates variances in the way a developer performs a modeling activity.

In Experiment 2, we studied the performance of the approach and found
that the generation of recommendations after an editing operation consumed on
average 143ms with a maximum of 197ms for a set of 19 activity patterns. We
consider these values as unintrusive for a user. However, computation time of
the activity pattern matching depends on the number of patterns defined in the
catalog and on the number of events kept in the matching process. The results
show that computation time rises linearly with the number of defined patterns.
Our subjects performed on average 219 editing operations during the experiment.
Drool’s implementation is known as very e�cient and the algorithm itself as the
state of the art for complex event processing. However, it might be necessary
to limit the event history for models with many editing operations in order

to guarantee a certain computation time. We are planning a more substantial
performance evaluation regarding those facts as part of a future industrial study.

In Experiment 3, we studied the relevance of recommendations generated
by our approach (see Table 2). Focusing on the first threshold strategy, which
always presents the ten most relevant recommendations to the user, we recom-
mended across all 16 subjects 88% (MR) of the activities that a user was actually
working on. These relevant recommendations comprised 19% (MP) of all recom-
mendations. The value of 72% for the MAP metric shows that we rank relevant
recommendations close to the top of the list. All three values are very promising
and show that we were able to recommend the majority of activities performed
by the user in a list of ten elements. The other two thresholding strategies show
similar promising results. Whether these results are good enough to get accep-
tance is a research question for ongoing work, which will be evaluated once the
whole auto-completion approach is available.

Concluding, the results of our evaluation show that the proposed approach
meets the challenges 1–4 discussed in Section 1. However, our evaluation is lim-
ited in several regards. The studied modeling activities were carried out over a
relatively short period of two hours and all subjects were solving the same tasks.
However, this experiment ensured that we captured manifold editing operation
sequences with similar goal and evaluated the tolerance for developer variances.
The computed regression models that combined individual ranking criteria are
based on the data of other subjects performing the the same modeling tasks,
this approach might have biased our results positively. We clearly identify the
need for more empirical and industrial evaluation to draw general conclusions
about the applicability of our approach.

7 Conclusions and Future Work

We presented an approach for recommending auto-completions of modeling ac-
tivities performed on structural UML-models. We identified five challenges that
had to be handled for making a recommendation approach useful to a user. The
developed approach addresses these challenges. It works in the background while
a developer is creating or evolving a model. Editing operations are analyzed and
matched to a predefined but extensible catalog of common modeling activities
for structural UML models. We evaluated our approach in a controlled experi-
ment with 16 students evolving models. We recommended 88% of the activities
that the subjects wanted to perform within a short list of ten recommendations.

We are currently working on an auto-completion mechanism for selected rec-
ommendations to complement our approach. Once both approaches are available,
we are planning an industrial study to gain more empirical data on performed
modeling activities, user preferences, and the discussed ranking criteria.

Acknowledgment

We are supported by the German Research Foundation (DFG): Ph49/8-1 and
the German Ministry of Education and Research (BMBF): Grant No. 16V0116.

References

1. Arlow, J., Neustadt, I.: UML and the unified process: practical object-oriented
analysis and design. 2 edn. Number ISBN 0-321-32127-8. Addison-Wesley (2006)

2. Fowler, M.: Refactoring: improving the design of existing code. 19 edn. Number
ISBN 0-201-48567-2. Addison-Wesley (2006)

3. University of Illinois at Chicago: Optimizing the object design model:
Course notes for object-oriented software engineering. http://www.cs.uic.edu/

~jbell/CourseNotes/OO_SoftwareEngineering/MappingModels.html (Accessed:
15/03/2013).

4. Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In Schürr,
A., Selic, B., eds.: Model Driven Engineering Languages and Systems. Volume 5795
of Lecture Notes in Computer Science., Springer Berlin Heidelberg (2009) 712–726

5. Sun, Y., Gray, J., Wienands, C., Golm, M., White, J.: A demonstration-based
approach to support live transformations in a model editor. In Cabot, J., Visser,
E., eds.: Theory and Practice of Model Transformations. Volume 6707 of Lecture
Notes in Computer Science., Springer Berlin Heidelberg (2011) 213–227

6. Ráth, I., Bergmann, G., Ökrös, A., Varró, D.: Live model transformations driven
by incremental pattern matching. In Vallecillo, A., Gray, J., Pierantonio, A., eds.:
Theory and Practice of Model Transformations. Volume 5063 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2008) 107–121

7. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1) (1982) 17 – 37

8. Murphy-Hill, E., Jiresal, R., Murphy, G.C.: Improving software developers’ fluency
by recommending development environment commands. In: Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. FSE ’12, New York, NY, USA, ACM (2012) 42:1–42:11

9. Holmes, R., Walker, R., Murphy, G.: Approximate structural context matching:
An approach to recommend relevant examples. Software Engineering, IEEE Trans-
actions on 32(12) (2006) 952–970

10. Foster, S.R., Griswold, W.G., Lerner, S.: Witchdoctor: Ide support for real-time
auto-completion of refactorings. In: Software Engineering (ICSE), 2012 34th In-
ternational Conference on. ICSE 2012, Piscataway, NJ, USA, IEEE Press (2012)
222–232

11. Mazanek, S., Maier, S., Minas, M.: Auto-completion for diagram editors based
on graph grammars. In: Visual Languages and Human-Centric Computing, 2008.
VL/HCC 2008. IEEE Symposium on. (2008) 242–245

12. Mazanek, S., Minas, M.: Business process models as a showcase for syntax-based
assistance in diagram editors. In Schürr, A., Selic, B., eds.: Model Driven Engineer-
ing Languages and Systems. Volume 5795 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2009) 322–336

13. Sen, S., Baudry, B., Vangheluwe, H.: Towards domain-specific model editors with
automatic model completion. Simulation 86(2) (2010) 109–126

14. Reder, A., Egyed, A.: Computing repair trees for resolving inconsistencies in de-
sign models. In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. ASE 2012, New York, NY, USA, ACM (2012)
220–229

15. Steimann, F., Ulke, B.: Generic model assist. In: MODELS 2013-16th International
Conference on Model Driven Engineering Languages and Systems. (2013)

16. Sparx Systems: Enterprise architect: A model driven uml tool suite. http://www.
sparxsystems.com (Accessed: 15/03/2013).

17. IBM: Rational software architect: Colaborative systems and software design.
http://www-01.ibm.com/software/rational/products/swarchitect (Accessed:
15/03/2013).

18. Mäder, P.: Rule-based maintenance of post-requirements traceability. PhD thesis
(2010)

19. Mäder, P., Gotel, O.: Towards automated traceability maintenance. Journal of
Systems and Software 85(10) (2012) 2205 – 2227

20. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In
Governatori, G., Hall, J., Paschke, A., eds.: Rule Interchange and Applications.
Volume 5858 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2009) 53–66

21. Red Hat: Drools 5: An integrated platform for rules, workflows and event process-
ing. http://www.jboss.org/drools (Accessed: 15/03/2013).

22. Reed, A.V.: List length and the time course of recognition in immediate memory.
Memory & Cognition 4(1) (1976) 16–30

23. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection.
Statistics Surveys 4 (2010) 40–79

