
C

T

P
a

b

a

A
R
R
A
A

K
E
r
M
R
R
S
T
T

1

f
1
e
c
i
t
i
p

t
a
t
fi
t
t
o
e
e
b

0
d

The Journal of Systems and Software 85 (2012) 2205– 2227

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

ontroversy Corner

owards automated traceability maintenance

atrick Mädera,∗, Orlena Gotelb

Institute for Systems Engineering and Automation (SEA), Johannes Kepler University, Linz, Austria
Independent Researcher, New York, USA

 r t i c l e i n f o

rticle history:
eceived 18 November 2010
eceived in revised form 27 July 2011
ccepted 19 October 2011
vailable online 25 October 2011

eywords:
vent-based development activity

a b s t r a c t

Traceability relations support stakeholders in understanding the dependencies between artifacts cre-
ated during the development of a software system and thus enable many development-related tasks. To
ensure that the anticipated benefits of these tasks can be realized, it is necessary to have an up-to-date set
of traceability relations between the established artifacts. This goal requires the creation of traceability
relations during the initial development process. Furthermore, the goal also requires the maintenance
of traceability relations over time as the software system evolves in order to prevent their decay. In
this paper, an approach is discussed that supports the (semi-) automated update of traceability relations
ecognition
odel changes

equirements traceability
ule-based traceability maintenance
oftware system evolution
raceability decay
raceability maintenance

between requirements, analysis and design models of software systems expressed in the UML. This is
made possible by analyzing change events that have been captured while working within a third-party
UML modeling tool. Within the captured flow of events, development activities comprised of several
events are recognized. These are matched with predefined rules that direct the update of impacted trace-
ability relations. The overall approach is supported by a prototype tool and empirical results on the
effectiveness of tool-supported traceability maintenance are provided.
. Introduction

Traceability provides for a logical connection between arti-
acts of the software development process (Gotel and Finkelstein,
994). In support of change management tasks, traceability deliv-
rs important information about the possible consequences of a
hanging requirement. For project management tasks, traceabil-
ty supports the control of a project’s progress and provides a way
o demonstrate the realization of user requirements. Traceability
s essential for numerous quality-oriented software development
ractices such as these.

Though widely accepted as beneficial, the costs associated with
raceability can be high, so the return on investment remains debat-
ble (Arkley and Riddle, 2005; Egyed et al., 2007). Unless mandated,
raceability is rarely used throughout all development stages, due
rstly to the number of artifacts or elements therein that often need
o be related to yield value, and due secondly to the need to main-
ain these relations each time a change occurs. Even where the set
f relations is minimal, the maintenance of traceability demands
ffort. While attention has been directed toward approaches for

stablishing traceability initially among artifacts, less attention has
een paid to ensuring this traceability remains correct over time.

∗ Corresponding author.
E-mail addresses: patrick.maeder@jku.at (P. Mäder), olly@gotel.net (O. Gotel).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.10.023
© 2011 Elsevier Inc. All rights reserved.

This is the problem of traceability decay and is the focus of this
paper.

The maintenance of traceability relations is a multi-step activ-
ity. As changes occur to the artifacts of software development,
it is essential to appreciate both where and how these artifacts
play a role with respect to the current traceability, along with an
understanding of the encompassing development activity that can
characterize the nature of the change. It is then necessary to under-
stand the impact of the development activity on the traceability and
to carry out those activities that can re-establish the traceability, at
least to the prior levels. These core tasks demand effective method
and tool support. This paper describes a novel approach for the
maintenance of requirements traceability relations. The approach
currently supports development models expressed in structural
United Modeling Language (UML) diagrams and converts part of
the manual effort necessary for traceability maintenance into com-
putational effort. There are two important innovations with the
approach: first is the automatic identification of development activ-
ities with impact on existing traceability relations (event-based
development activity recognition); and second is the use of rules
to describe development activities and the necessary updates in an
abstract way (rule-based traceability maintenance). The approach
is (semi-) automated as, depending on the nature of the change and

the status of the existing traceability, the user may have to provide
input to the process.

In this paper, we provide an exhaustive and mature description
of an approach that we have developed over the past several years.

dx.doi.org/10.1016/j.jss.2011.10.023
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:patrick.maeder@jku.at
mailto:olly@gotel.net
dx.doi.org/10.1016/j.jss.2011.10.023

2206 P. Mäder, O. Gotel / The Journal of Systems

ability needs for a new
proje ct and later usage

Creating and maintaining
traceabili ty

Using t raceability

Project with up-to-date

Information need th at
requi res t raceabili ty usage

Changing a model
with traceabili ty impa ct

Information need
that cannot be

traceabili ty

C
t
M
e
n
a
d
r
a
u
o
p
t
m
(
t

t
p
i
o
a
c

2

f
t
f
a
A
d
a
r
s
P

i
t
r
L
r

f
t
i
(
H
t
n
o

Fig. 1. Traceability life cycle for a project

ertain parts of the approach have been published previously. In
hree prior publications we discussed aspects of the approach,

äder et al. (2008a) gave an initial overview of the approach, Mäder
t al. (2008b) discussed technical details of one particular compo-
ent of the approach, namely the development activity recognition,
nd Mäder et al. (2009a) referred to link update concepts and intro-
uced different types of development activities according to the
equired update. In addition, tool demonstration papers provide for
n overview of the development prototype. The most complete and
p-to-date tool information is provided in Mäder et al. (2009b). The
bjective of this current paper is to consolidate the work into one
rimary publication at the requisite level of detail. Building upon a
horough analysis of the state of the art in the field of traceability

aintenance, the current paper demonstrates and discusses how a
semi-) automated approach in this topic can convert large parts of
edious and error-prone manual effort into computational effort.

The paper is organized as follows. The topic of traceability main-
enance and related research is discussed in Section 2. Section 3
rovides a conceptual overview of the entire approach, outlining

ts scope, assumptions and phases. Sections 4 and 5 provide depth
n the two main phases of the approach, and an evaluation of the
pproach is described in Section 6. The paper concludes with a
ritical review and suggestions for future research in the area.

. Traceability maintenance

Providing traceability for a project is not a trivial matter; dif-
erent activities are necessary to both create and then maintain
raceability relations, as suggested in Fig. 1. An agreed methodology
or traceability, specifying how to create, maintain and use trace-
bility, is not generally available (Aizenbud-Reshef et al., 2006).
n important reason for this absence is the high variability in
evelopment processes used in practice. Nevertheless, common to
ll processes is the necessity to specify which artifacts should be
elated and how this information should be used to obtain a con-
istent set of traceability relations across developers (Dömges and
ohl, 1998).

Pinheiro (2004) divides the ‘production’ of traceability relations
nto perception, registration and maintenance. Other authors refer
o the registration as creating, establishing or installing traceability
elations. These terms will be used interchangeably in this paper.
ikewise, traceability maintenance and update, and traceability
elation and link, will be used synonymously.

In recent years, much research has been dedicated to techniques
or the automated identification and creation of traceability rela-
ions. The majority of these approaches apply text mining and
nformation retrieval techniques to identify candidate relations
Alexander, 2002; Antoniol et al., 2002; Marcus and Maletic, 2003;

ayes et al., 2003; Lucia et al., 2008). Even with these emerging

echniques, manual intervention to prune candidate relations can-
ot be completely avoided. One day it may be viable to simply rely
n automated trace generation on demand and as needed, but that
 and Software 85 (2012) 2205– 2227

requires substantive advances in the precision of these techniques
to remove the need for continual re-confirmation of the candidate
relations. An alternative is to generate a quality set, through these
techniques and manual pruning, and then to focus on maintain-
ing them. This paper focuses on the latter strategy. There has been
less research work on the automated maintenance of traceabil-
ity relations. Maintaining traceability means to prevent its decay
while related artifacts evolve. Aizenbud-Reshef et al. (2006) refer
to maintenance as the most challenging aspect of traceability.

Murta et al. (2006) characterize the problem of traceability
maintenance between architectural elements and source code as
follows: “. . .given an initial set of established traceability links,
and given that both an architecture and its implementation can
evolve independently, how can traceability links be updated with
the addition of new links, removal of existing links, and changes
in existing links to ensure that each architectural element is at all
times accurately linked to its corresponding source code configu-
ration items, and vice versa?” Without maintenance, traceability
relations between elements get lost or represent false dependen-
cies. Such a step by step degradation of traceability relations leads
to traceability decay. This can be prevented by continuous or on-
demand traceability maintenance. On-demand maintenance offers
the theoretical benefit that relations are only updated according to
the current state of the model, with potentially fewer incremen-
tal update steps as compared to continuous maintenance. On the
other hand, the demand for updated traceability might arise a long
time after the change to the model that has caused the need for
maintenance and it might be harder to perform than instantaneous
continuous maintenance. From a theoretical point of view, both
options have advantages and disadvantages, highlighting the need
for further empirical studies in this area. It would be important to
independently assess the quality of the traceability relations estab-
lished, as a result of following the two strategies, with respect to a
shared set of traceability-enabled tasks demanding impact analysis
and change management. Moreover, the value of blending contin-
uous and on-demand approaches to maintenance suggests an area
of open research.

This section explains why traceability maintenance becomes
necessary during the development and evolution of a software sys-
tem. It also discusses the strengths and weaknesses of existing
approaches to the problem in order to put the approach proposed
in this paper into context.

2.1. Why traceability maintenance is necessary

A common way to cope with the complexity of software systems
engineering is modeling the product to be developed at different
levels of abstraction and from different perspectives. This process
is called model-based development. A model can be defined as an
abstraction of some real world object and, in the context of a devel-
opment process, it refers to the product which is the subject of
engineering (OMG, 2003, 2010). In software engineering activities,
models can be used to represent the requirements, the design and
the implementation of a software system. As all the models of one
development project describe different aspects of the same prod-
uct, they are interrelated. For example, the design of a software
system depends on its requirements, while the implementation
depends on its design. The (OMG, 2010) provides a set of structural
and behavioral diagrams that allow many facets of a development
process to be modeled. The UML is further supported by many
modeling tools and is the quasi-standard in object-oriented devel-
opment. An extension, the Systems Modeling Language (SysML)

(OMG, 2008), provides additional diagrams and options for systems
development.

Model-based development processes may be viewed as multi-
phase transformation processes from the initial problem statement

P. Mäder, O. Gotel / The Journal of Systems and Software 85 (2012) 2205– 2227 2207

«trace»

«trace»

«trace»

Outgoing
traceability relations

Incoming
traceability relation

Independent model element

Dependent
model element

F
t

t
a
i
n
t
t
c
s
a
e
f
w
f
w
m
c

c
2
a
a
t
d
v
A
d
b
w
d
a
2

o
t
(
t
fi
p
a
2

m
b
o

method

Changing an eleme nt in one model (e. g., chan ging a use case)

«trace» «t race» «t race» «trace»

class

I. No impact on
rel ated element

II. Changes to the rel ated
element a re ne cessary, but

no impact on t raceabili ty

III. Changes to the rel ated
element and to t raceabili ty

rel ations a re ne cessa ry

att ribu te

+

+

+ –
att ribu te

+

Fig. 3. Changing an element in one model can have different impact on related

2.2.2. Rule-based approaches
ig. 2. Distinction of traceability relations into incoming and outgoing relative to
he selected element within a model

o the final solution (Jacobson et al., 1999). These transformations
re carried out as development activities. Each of these activities
s applied to or influenced by various input artifacts and creates
ew or improved output artifacts. If this multiphase transforma-
ion process is carried out only once, entering each phase only when
he preceding phase has been completed, it is a waterfall-like pro-
ess (Royce, 1987). Most problems nowadays are too complex to be
olved in this manner and state of the art development processes
re iterative and incremental (e.g., the Unified Process; Jacobson
t al., 1999). Moreover, development does not always proceed in a
orward direction (forward engineering). Rather, it may also involve
orking in a backward direction (reverse engineering). Combining

orward and reverse engineering results in round-trip engineering,
here developers opportunistically mix both modes of develop-
ent. This mode of development necessitates interrelated model

hanges.
Creating an explicit traceability relation between two artifacts

an capture their dependency. Within the UML meta-model (OMG,
010), the representation of traceability relations is considered as

 type of dependency with a given direction. The direction of such
 traceability relation points from the dependent model element
owards the independent model element, as shown in Fig. 2. This
irectionality is intended to convey semantics, but does not pre-
ent bi-directional use or navigation of the traceability relation.
rlow and Neustadt (2005) state that a change to the indepen-
ent element (supplier) may effect or supply information needed
y the dependent element (client) and that the client in some
ay depends on the supplier. A stereotype “trace” is applied to
istinguish traceability relations from other dependencies that
re part of the models (Arlow and Neustadt, 2005; Weilkiens,
006).

A major problem that arises in model-based software devel-
pment is ensuring that related models evolve consistently while
he development proceeds (Huzar et al., 2004). Finkelstein et al.
1994) state that checking consistency between perspectives and
he handling of inconsistency creates many interesting and dif-
cult research problems. Traceability can support this issue by
ropagating changes that happen to an element in one model to
ll its related elements in other models (Aizenbud-Reshef et al.,
006).

Such changes to related model elements can also necessitate

aintaining the relations to reflect all the initial dependencies

etween the evolved model elements after the change. Three types
f impact can be distinguished (see Fig. 3):
elements and on the existing traceability relations

(I) The change can be purely corrective with no impact on the
related element. For example, correcting typos within the
description of a use case.

(II) The change can have impact on the related element, but not
require changes to its structure. For example, a new method
within a class is required due to an enhanced use case. The
change to the original element also requires evolving the
related element.

(III) The change can have impact on the related element and,
due to changes in the structure, also on traceability. For
example, an attribute has to be extracted into a new
class due to an enhanced use case. The change to the
original element not only requires evolving the related ele-
ment, but also retaining the traceability between the model
elements.

2.2. Related work

This section describes the related work in the area, differen-
tiated according to the predominant mechanism used to achieve
the traceability maintenance. The approach described in this paper
builds upon each of these mechanisms, so points of difference are
highlighted in the descriptions.

2.2.1. Subscription-based approaches
Cleland-Huang et al. (2003) present an approach that can help

maintain traceability called event-based traceability (EBT). The
authors link requirements and other artifacts of the development
process through publish-subscribe relationships stored in a cen-
tral database. Changes to requirements are categorized by seven
kinds (create, inactivate, modify, merge, refine, decompose and
replace) and events are raised according to kind. The identifi-
cation of these changes will be discussed separately in Section
2.2.3. Created events are published to an event server that sends
notifications to subscribers of the changed requirement. These noti-
fications contain detailed information about a change to facilitate
the manual update process of the subscribing artifacts. This work
discusses a sophisticated change propagation mechanism, enabled
by traceability and change recognition (i.e., informing the owner
of a related artifact with a detailed message about the identified
change to a requirement and its type). The approach does not dis-
cuss the actual maintenance of impacted traceability relations, but
the event generation aspect of the work has inspired the approach
discussed in this paper and will be discussed in more depth in
Section 2.2.3.
Spanoudakis et al. (2004) present a rule-based approach for
the automatic generation of traceability relations between docu-
ments, which specify either requirement statements or use cases

2 stems

(
fi
n
e
s
r
d
a
e
a
t
t
f
a
l
i
t
b
a
i
i
u

t
t
D
t
c
t
a
fi
a
e
t
a
t
t
a
c
t
m
T
e
p

t
c
r
a
p
b
t
l
c
t
t
t

2

n
E
t
(
t
l

208 P. Mäder, O. Gotel / The Journal of Sy

in structured natural language) and analysis object models. A
rst kind of rule, Requirement-to-object-model rules, and a tech-
ique based on information retrieval are used to automatically
stablish traceability relations between requirements and analy-
is models. A second kind of rule analyzes the relations between
equirements and object models to recognize intra-requirements
ependencies and establishes these relations automatically. The
pproach requires the export of all supported artifacts into the
Xtensible Markup Language (XML) format and the rules gener-
te traceability relations for the exported state of the models. Due
o the use of information retrieval, there is uncertainty within
he recognized relations and limited support for developers with
alse recognition. The approach, in its current form, does not
ppear to support the maintenance of traceability relations fol-
owing artifact evolution explicitly, but the approach proposes
nteresting ideas that could feasibly do so. Two ideas influenced
he approach discussed in this paper. First, the use of extensi-
le and customizable rules that describe properties of expected
rtifacts in an abstract way. Second, the idea of organizing rules
n the style of event, condition, action and to store these rules
n the open XML format to facilitate their customization by the
ser.

Murta et al. (2006, 2008) describe an approach called ArchTrace
hat supports the evolution of traceability relations between archi-
ecture and implementation. The use of the extensible Architecture
escription Language (xADL) for the description of software archi-

ectures and the use of Subversion for the versioning of source
ode is required in the current form of the approach. The authors
rigger a set of eight policies on committing a new version of
n artifact (e.g., suggest traceability link to a more recent con-
guration item version if the user creates a traceability link to
n older version). These policies mostly ensure the update of
xisting traceability relations on artifacts to new versions within
he version control system. The concept of having a customiz-
ble set of policies (or rules) whose evaluation is dynamically
riggered by change events (i.e., committing a new configura-
ion to the configuration management system) is similar to the
pproach discussed in this paper. The fact that there are no poli-
ies that would allow for the recognition of structural changes
o models (e.g., the replacing, splitting or merging of related ele-

ents) has been recognized as a shortcoming of the approach.
hese can be primary triggers for traceability maintenance, how-
ver, and so are addressed by the approach described in this
aper.

Mens et al. (2005) describe an extension to the UML meta-model
o support the versioning and evolution of UML models. The authors
lassify possible inconsistencies of UML design models and provide
ules, expressed in the Object Constraint Language (OCL), to detect
nd resolve these. The approach transforms the models into a sup-
orted format, applies their rules and suggests model refactorings
ased on the results. While the authors discuss the necessity for
raceability management and change propagation during the evo-
ution of UML models, they provide no support for this scenario. In
ontrast to other rule-based approaches, the approach discussed in
his paper uses rules to specify change patterns that occur during
he evolution of related artifacts and require the maintenance of
raceability relations.

.2.3. Approaches based on recognizing evolution
Cleland-Huang et al. (2002) describe a concept for the recog-

ition of change types applied to requirements as part of their
BT approach (see Section 2.2.1). These change types are used for

he description of a recognized change during change propagation
called change events). The authors distinguish and capture seven
ypes of changes to a requirements model as events, as listed ear-
ier. All seven change types are composed of a sequence of four
 and Software 85 (2012) 2205– 2227

different change actions (i.e., create requirement, set requirement
attribute, create link and set link attribute). The recognition of com-
plex change types (e.g., merge, refine, decompose and replace)
depends on the manual creation of traceability relations with a
certain type between the original requirement and the newly
created requirement(s) and, in certain cases, on setting an attribute
of the initial requirement to the state inactive. The authors pro-
vide an algorithm that identifies the seven change types within
a sequence of captured change actions. Furthermore, the authors
suggest triggering the actual recognition process only for a com-
pleted user-defined session in order to minimize the risk of false
recognition. The concept of observing incremental and elementary
changes to a model, and the recognition of compound change activ-
ities, is similar to the approach discussed in this paper. Due to the
scope of the EBT approach, it does not deal with the more com-
plex task of recognizing compound changes to models, and focuses
more on the manual creation of traceability relations instead of
maintaining them.

Engels et al. (2002) present a classification of UML model refine-
ments to preserve consistency during the evolution of UML-RT
models (a UML enhancement for real-time systems). The authors
identify three kinds of atomic modification: creation, deletion and
update, and the focus is limited to four model elements: capsules,
ports, connectors and protocols. The focus of this work lays on pre-
serving and maintaining consistency between two models after
incremental evolution steps. The approach allows, for example,
to demonstrate under which conditions a modified deadlock-free
model remains deadlock-free. The work does not show how atomic
changes can be combined into the recognition of composite change
activities with development intent, nor how to maintain consis-
tency in these cases. The identified atomic modifications are similar
to those identified during the development of the approach dis-
cussed in this paper and helped to substantiate their correctness
and completeness.

Hnatkowska et al. (2003) specify behavioral refinements in UML
collaboration diagrams and describe how these relate to structural
refinements. The purpose is to establish refinement relationships
between different abstraction layers. The authors provide a classifi-
cation of nine simple class diagram refinements (e.g., adding a class,
modifying an attribute, modifying a method, adding an attribute
to a class, splitting a class into two classes with an association,
introducing a successor of a class, adding an association, modifying
an association and introducing an intermediate class). The authors
mention possible tool support, but do not discuss how these refine-
ments could be detected and require the developer to establish the
relationships manually at present. The work provided input for the
identification of model changes that require traceability mainte-
nance in the approach described in this paper.

Maletic et al. (2005) describe an XML-based approach to support
the evolution of traceability relations between models expressed
in the XML (with no restriction to the content of the model). The
authors also describe a traceability graph and its representation in
the XML, independent of specific models or tools. They discuss the
issue of evolution and propose to evolve traceability along with the
models by detecting syntactic changes at the same level and type as
the relations (e.g., textual links require textual change detection).
The authors do not discuss how to detect these changes nor how to
update the impacted traceability relations, but refer to their own
work on the analysis of fine-grained source code differences and
mention that this work could be applied to artifacts in the XML for-
mat as well. The observation that traceability should be maintained
along with incremental changes to related models has inspired

the approach discussed in this paper. There are techniques avail-
able, like the Eclipse EMF Compare Framework that can efficiently
compute differences between models in the XML representation,
making the proposed concept a viable solution for tools storing

P. Mäder, O. Gotel / The Journal of Systems and Software 85 (2012) 2205– 2227 2209

tUser

traceMaintainer

Printer

«trace» «trace»

Printer
New

Componen t Printer

«trace» «trace»

DEL(class)
event issued

ADD(component)
 event issued

MOD(component)
 event issued

D(p) ? ?

D(p)
?

A(p)

D(p)

A(p)

M(p)

Development activity
has been recognized in
the background and
link update is carried out
automatically

Delete class printer Add new component Rename component

imple

t
i
v
c
t
w
p
o

v
(
w
m
i
p
e
i
t
m
s

3

f
b
t
t
o
o

3

e
a
c
m
a
o
a
m

Fig. 4. Phases of the approach as visualized by the s

heir artifacts in the XML format. Nonetheless, artifacts are stored
n many different formats and tools, causing the need for a con-
ersion of changed models into the XML format anew after each
hange to the model in order to follow the proposed concept for
hose tools. The export of the complete model consumes time and
ould hinder the progress of the developer. For that reason we pro-
ose the computation of differences based on the original format
f the artifacts.

Shen et al. (2003) suggest an extension to the UML meta-model
ia specified stereotypes according to four types of refinement
addition, deletion, connection and disconnection). The aim of their
ork is to support model modifications and, more specifically,
odel merging when different designers are concurrently work-

ng. Using these stereotypes on different abstraction levels of a
roject, the authors are able to check consistency between lev-
ls. Despite being able to maintain consistency of a model that
s being evolved separately by multiple developers, using stereo-
ypes may become a burden to designers who are changing the

odel and have to document these changes with the proposed
tereotypes.

. Overview of the approach

This section describes the development of a rule-based approach
or the (semi-) automated maintenance of traceability relations
ased on the recognition of development activities. It describes
he scope and two main phases of the approach. It also discusses
he assumptions underlying the approach and the concepts devel-
ped to address a number of challenges. It ends with a technical
verview.

.1. Scope and phases

The approach is concerned with incremental changes to an
volving set of traceability relations, so the maintenance of
lready established traceability relations. The approach is not
oncerned with creating an initial set of relations, which is
ostly the domain of techniques based on information retrieval
nd data mining. Section 2.1 highlighted contemporary devel-
pment approaches and explained how changes to related
rtifacts act as the trigger for traceability maintenance. This
eans that, in order to enable traceability maintenance in
example of replacing a traced class by a component

a (semi-) automated way, it is necessary to recognize these
changes to related artifacts, and then to determine and per-
form the required update to the impacted traceability relations.
Our approach focuses on maintaining traceability as a by-
product of changes made to structural UML models during
object-oriented software development. Our work is based on
version 2.3 of the UML, which was the latest version at the
time of this work. This leads to two natural phases in the
approach:

Phase 1 Recognition: Capturing elementary changes to model
elements and recognizing the compound development
activity applied to the model element, as comprised sev-
eral elementary changes; and

Phase 2 Maintenance: Updating the traceability relations associ-
ated with the changed model element.

Fig. 4 illustrates these two phases using an example that replaces
a class within a design model, described as a UML class diagram,
with a component. The development activity consists of three ele-
mentary changes: deleting class Printer, creating a new component
and renaming the New Component as Printer. The required traceabil-
ity update is re-creating the two traceability relations that existed
on class Printer on the component Printer after the activity has been
completed.

3.1.1. Development activity recognition
Relevant changes that might require the maintenance of trace-

ability are those that alter artifacts of related models (Maletic et al.,
2005). Such changes comprise a sequence of one or more incre-
mental changes (Cleland-Huang et al., 2002). This paper refers to
these as elementary changes.

While identifying elementary changes to artifacts is mostly a
technical problem, the recognition of compound change activities
consisting of multiple elementary changes can be a complex task
with high uncertainty. This paper refers to such sequences of ele-
mentary changes as development activities.

A decision that had to be made during the development of the
approach was whether to perform the development activity recog-

nition process automatically or with user support. This decision
depends on the required certainty in the change recognition, the
acceptable manual effort and the influence permitted on the work-
ing process of the user. Models described in a semi-formal language

2 stems

s
w
m
m
A
t
a
a
t

e
s
t
g
2
i
a
s
c
m

3

n
g
k
d
s
m
e
a
m
t
w
s

o
a
(
m
o
f
p

3

•

•

210 P. Mäder, O. Gotel / The Journal of Sy

upport different types of elements and follow a general definition
ithin a meta-model. An idea that emerged during the develop-
ent of the approach was to use this meta-information about a
odel in order to omit user support for the recognition process.
dditional information about changing elements (e.g., type, name,

ype of the parent element) and knowledge about possible, allowed
nd meaningful changes to the different types of model element
llow for the identification of a limited set of development activi-
ies.

To demonstrate and study the approach in depth, it was nec-
ssary to decide which type of model to support. We focused on
tructural UML diagrams as most practitioners interviewed about
heir traceability practice referred to related structural UML dia-
rams within their software development process (Mäder et al.,
009c). In particular, the development activities considered so far

nvolve the following model elements: class, component, pack-
ge, attribute, method, association, dependency, inheritance and
tereotypes of these (e.g., aggregation, composition, association
lass and interface). Accordingly, all diagrams containing these ele-
ent types are supported by our approach.

.1.2. Traceability relation maintenance
Following the recognition of changes, the subsequent mainte-

ance of traceability relations is based upon two premises. First,
iven a model element related by traceability relations, along with
nowledge of the element(s) that replace the initial one after a
evelopment activity, all traceability relations of the initial element
hould be present also on the evolved element(s). Second, given a
odel element related by traceability relations, along with knowl-

dge about its modification (moving one of its parts into another
rtifact), those traceability relations on the element related with the
oved part should be copied or moved to the other element. Those

raceability relations related only to the part should be moved,
hile those also related to remaining parts of the original element

hould be copied.
In this paper, the elements that are involved in the update

f traceability relations are distinguished into update sources
nd targets. The approach discussed in this paper is called
semi-) automated as, in many cases, it is not possible to deter-

ine, which traceability relations of an element refer to which
f its parts, unless explicitly specified. The occasional need
or manual intervention is therefore discussed throughout this
aper.

.2. Assumptions

The approach is based on the following assumptions:

Model-based development of a system using UML and SysML dia-
grams for modeling the structure of the system (e.g., for analysis,
design or implementation models). The semi-formal nature of
both UML and SysML models supports the recognition of changes,
and their use is common in industry (Mäder et al., 2009c). The
focus on these kinds of models means that the approach is
concerned solely with maintaining post-requirements traceabil-
ity (Gotel and Finkelstein, 1994).
The existence of an up-to-date traceability information model,
defining permitted traceability relations for the project (Mäder
et al., 2009d). A traceability information model (TIM) is a graph
defining the permissible trace artifact types, the permissible trace

link types and the permissible trace relationships on a project, in
order to address the anticipated traceability-related queries and
traceability-enabled activities and tasks. In our context, the TIM
allows for automated traceability updates in accordance to the
traceability strategy of a project.
 and Software 85 (2012) 2205– 2227

• A pre-existing set of traceability relations established between
model elements in accordance to the traceability infor-
mation model and stored within a traceability relation
repository. A traceability relation repository provides database-
like features for storing, changing, and querying traceability
relations.

• Only a limited number of development activities evolving a
model element are performed in parallel by one developer. It is
assumed that a developer will finish her/his development activ-
ities with only a limited number of intermediate elementary
changes belonging to other development activities. The con-
crete value of acceptable parallel development activities remains
configurable by the user. Issues arising from multiple users
performing concurrent changes to model are not within
our scope as these should be handled by the modeling
tool.

• Changes to related models are undertaken within a Computer
Aided Software Engineering (CASE) tool. The use of a CASE tool
eases gaining access to change information.

Given these assumptions, the approach supports the follow-
ing scenarios: (I) the change of a model within the same level of
abstraction, typically to evolve the model as a result of changing or
new requirements (e.g., evolving the analysis model); and (II) the
change of a model into a more abstract or detailed level of abstrac-
tion, typically to explore requirements realization (e.g., refining
the analysis model into the design model). There are no restric-
tions as to those artifacts that can be related, but the approach will
maintain only those ends of traceability relations that reside on
an element that is part of a model expressed as a structural UML
diagram.

3.3. Challenges and concepts

The main challenge related to Phase 1 of the approach is identi-
fying development activities within a flow of elementary changes.
This includes:

R.1: Relating several elementary changes to one development
activity. The type of an elementary change and that of the
impacted model element do not offer enough information to
relate elementary changes to one another. It is necessary to
compare additional properties of the changed element, like its
identity through several changes or the type of the element
containing the changed one.

R.2: Recognizing different sequences of elementary changes (i.e.,
different ways to perform an activity) as the same develop-
ment activity.

R.3: Recognizing different orders of the same elementary changes
as the same development activity.

The main challenge related to Phase 2 of the approach is identi-
fying impacted or missing traceability relations and updating them.
This includes:

M.1: Defining those elements of a development activity that hold
the initial relations (update sources) and those elements that
receive these traceability relations after the development
activity (update targets).

M.2: Determining those traceability relations of a modified ele-
ment that are impacted by moving one of its parts to another
element.
To address these challenges, the approach uses traceability
maintenance rules to define development activities to be recog-
nized and traceability updates that have to be carried out. The use

P. Mäder, O. Gotel / The Journal of Systems and Software 85 (2012) 2205– 2227 2211

traceMAIN TAINER

Model

Traces

Event
Generator
Plug-in

traceS TORE
Plug-in

Rules

Change Events

Link Que ries and
Updates

Rule Edi tor

UML Modeling Tool

Rule Catalog

Rule Engine

LinkUpdateManager

Event
Cache

Open Activi ty
Cache

EventController

vervie

o
b
t
o
c
s
a

s
m
d
t
i
e
i
t
R
m
c
a
c
p
g
o
c

c
a
b
a
o
a
m
o
p
p
o
o
t
C

3

d
fi

Fig. 5. Technical o

f rules is not new in the field of traceability (see Section 2.2.2),
ut in contrast to approaches that apply information retrieval
echniques to identify traceability relations between two sets
f artifacts, the introduced rules allow the user to support and
ustomize the recognition process with additional properties of
earched relations (e.g., information about the structure of the
rtifacts).

Traceability maintenance rules allow to define abstract and valid
equences of elementary changes that establish the same develop-
ent activity. A rule consists of two parts, one that defines the

evelopment activity to be recognized and one that specifies the
raceability update to be carried out. Since most development activ-
ties can be performed in multiple ways, in terms of underlying
lementary changes, a rule consists of alternative sections group-
ng the definition of one specific way to perform the activity and
he correlating traceability update directives, addressing Challenge
.2. That part of an alternative section that defines the develop-
ent activity is called the change sequence and defines elementary

hanges that are necessary in order to perform the development
ctivity in that alternative way. Abstract elementary changes are
alled masks, a concept that addresses Challenge R.1. The update
art of a change sequence allows update sources and update tar-
ets to be specified, addressing Challenge M.1. All concepts used by
ur rules will be explained within the next section, and the reader
an find an example rule in Listing 1.

The defined rules are compared with captured elementary
hanges and, once a match has been detected, the defined trace-
bility update within the rule is carried out. A match can only
e detected if all the elementary changes have been performed
nd can be evaluated. For that purpose, a buffer holds a number
f recently performed changes for later comparison. This buffer,
long with the concept of masks and property references (described
ore fully in Section 4.3), allows a development activity to be rec-

gnized in any valid order that the elementary changes can be
erformed in, addressing Challenge R.3. The traceability update is
erformed once a development activity has been completely rec-
gnized. If an element is modified during the activity, by moving
ne or more of its parts to another element, then the user is asked
o highlight the impacted traceability relations. This addresses
hallenge M.2.

.4. Technical overview
Fig. 5 gives a technical overview of the approach, setting the
iscussed concepts in relation to each other. The left side of the
gure depicts a development tool holding models and traces for
w of the approach

a given project. That tool is being extended by two plug-ins. The
first plug-in, Event Generator, recognizes changes to development
models, captures them as change events and transmits them to
the Rule Engine for analysis. The second plug-in, traceSTORE,
gives access to the traceability within the development project
and is able to carry out determined update actions once a devel-
opment activity has been recognized and requires traceability
maintenance. The right hand side of Fig. 5 depicts the developed
Rule Engine and the Rule Catalog as well as its main concepts,
which will all be discussed in depth within the next two sections.
A developer performing manual changes to the depicted model
will be observed by capturing the elementary changes made
to the model as change events. As soon as a number of change
events are recognized as being one of the defined development
activities within the Rule Catalog, and where traceability has
become outdated due to the performed changes, the approach
automatically or semi-automatically updates the impacted
traceability.

The approach to development activity recognition is discussed
in depth in Section 4, while the update process for traceability
maintenance is discussed in depth in Section 5.

4. Development activity recognition

This section describes Phase 1 of the approach and its underlying
concepts.

4.1. Change events

Section 3.1.1 introduced elementary changes to model ele-
ments. We assume the use of a CASE tool that allows for the capture
of such elementary changes and that issues change events contain-
ing the captured information (e.g., Sparx Enterprise Architect). A
change event is issued if an elementary change altered at least one
property of interest of an element.

There are three fundamental types of change to elements: add,
delete and modify. In addition to the type of change, information
is captured about the properties of the model element that the
change is applied to (e.g., name and identifier), as property value
pairs. For the addition of an element, these properties only exist
after the creation of the element, while for deletion they only exist

before destruction. For the modification of an element, both pre
and post modification properties are required for analysis. Three
change events are therefore distinguished: ADD, DEL and a com-
posite preMOD/postMOD event.

2 stems

a
a
f
t
F
g
t
M
e
p
p
b
a
m
i
e
m
(
m

4

t
s
a
e
e
t
t

e
a
t
U
t
s
t

1
2
3
4
5
6

b
r
d
5
d
o
w
u

4

m
b
m
i
t
n
s

212 P. Mäder, O. Gotel / The Journal of Sy

In principle, change events to all supported element types of
 modeling tool could be issued and they could capture all avail-
ble properties of the elements. Such an approach would cause
or more complex models an enormous number of events, poten-
ially slowing down any processing with data that is rarely used.
or that reason, an event configuration represented as a class dia-
ram defines the element types of interest along with the properties
hat are needed to recognize defined development activities (see

äder et al., 2008b for further information). This diagram can be
nhanced iteratively if additional element types need to be sup-
orted or if additional properties are needed. The minimal required
roperties of an element are its identifier and its type; they have to
e invariable over the life of an element and thus enable unique
ddressing. Properties can also reflect the state of another ele-
ent related to a changed one (e.g., parent, end1, end2, dependent,

ndependent, sub and super). A parent element is available for all
lements of a UML model due to the hierarchical order of these
odels. Other related elements are specific to certain element types

e.g., end1 and end2 are only available for associations within UML
odels).

.2. Development activities

The success of the approach depends on the ability to capture
raceability relevant changes to related model elements. It is not
ufficient to separately examine the change events discussed before
s these reflect only a single change to a model element, not nec-
ssarily the whole transformation of an element into one or more
volved elements, requiring traceability updates. Such transforma-
ions are identified by examining several change events in relation
o each other.

Development activities are changes that happen and recur, for
xample, while developing the design of a system, refining an
bstract model into a more concrete model, and during the correc-
ive and evolutionary maintenance of systems. Of interest are all
ML classifiers and relations that establish the structure of a sys-

em. While evaluating possible changes to elements of these types,
ix basic categories of development activity have been recognized
hat require traceability update:

. Adding an element.

. Deleting an element.

. Replacing an element.

. Merging several elements into one whole.

. Splitting an element into parts.

. Modifying an element by adding or removing parts.

These development activity types correlate with those that have
een identified by Cleland-Huang et al. (2002) for the evolution of
equirements artifacts (see Section 2.2.1). These activity types are
iscussed along with the necessary traceability update in Section
. In this current section, the focus is on recognizing compound
evelopment activities from a flow of elementary changes. This
bservation has also been made by Cleland-Huang et al. (2002),
here the authors decided to facilitate the recognition process by
ser support.

.2.1. Identifying development activities
To define possible development activities to structural UML

odels, one could start to generate all possible permutations
etween types of model elements and the categories of develop-
ent activities listed before. The disadvantage of such an approach
s that it would generate a large number of development activi-
ies, many incorrect in relation to the UML meta-model or with
o semantic meaning (e.g., replacing an attribute by a method or
plitting a class into two associations).
 and Software 85 (2012) 2205– 2227

A different approach has been chosen to define a comprehen-
sive list of possible and meaningful development activities. Several
development methodologies, as well as industrial projects, were
studied and traceability relevant change activities that usually
occur during the analysis and design of systems, or due to evo-
lutionary changes, were collected. Forward engineering processes
that were studied include the Unified Process (Jacobson et al., 1999;
Kruchten, 2000; Arlow and Neustadt, 2005), Fusion (Coleman,
1994) and Quasar (Russek, 2004; Siedersleben, 2004). Refactoring
activities (Fowler, 1999) were also studied and included in the list
of activities. Among all the refactorings suggested by Fowler, those
of interest were those that altered the structure of a development
and could possibly cause the need for traceability maintenance
(e.g., Move Class). We found that most of the relevant refactorings
were already covered by existing development activities included
for the forward engineering processes. In addition, the discussion
of systems design with UML of Lano (2005) provided additional
candidates for development activities. As a result of these stud-
ies, the current rule catalog for structural UML models comprises
38 development activities (13 apply to associations, 4 to inheri-
tance, 4 to attributes, 2 to methods, 5 to classes, 6 to components
and 4 to packages) defined as 19 rules with 67 alternatives (Mäder,
2009). The catalog has been improved multiple times and has been
used in its current form during several studies and experiments
(Mäder et al., 2008a,b, 2009a), one of them discussed in Section
6. A few example development activities, along with their type
according to the categories introduced before, are listed in the
following:

Development activity examples applied to relations:

• Refining an unspecified association into one directed association
(type: replace)

• Refining a bidirectional association into two unidirectional asso-
ciations (type: split)

• Refining an association into aggregation or composition (type:
replace)

• Resolving a one to many association (type: split)
• Resolving a many to many association (type: split)
• Resolving an association class (type: split)
• etc.

Development activity examples applied to classifiers:

• Moving attribute, method, class, component, package (type:
modify)

• Splitting class, component, package (type: split)
• Merging class, component, package (type: merge)
• Converting class into component (type: replace)
• Converting attribute into class (type: replace)
• etc.

Several development activities are captured by more than one
rule, e.g., splitting a class, package and component. Splitting and
merging of elements are recognized by a move of their parts, e.g.,
the move of attributes and methods between classes for recogniz-
ing class merge and split. Some of the activities are only traceability
relevant if the impacted model element is being deleted and a new
element created, instead of modifying the existent one (e.g., refin-
ing an association to an aggregation), because only in the former
case do existing traceability relations become disconnected and
have to be recreated on the replacing element. This is the reason for
the difference in the number of activities and rules. We published

a list of all identified development activities and a list of all defined
rules in the appendices of Mäder (2009). In this document, we pro-
vide an explanation for each development activity and relate it to
the covering rules.

P. Mäder, O. Gotel / The Journal of Systems

OrderManager Order
- printOrder()

OrderManager
- printOrder()

Order

before development a ctivity after d evelopme nt a ctivi ty

a
t
a
i
t
c
b
a

(

i
y
c
t
i

4

c
r
f
a
m
e
b
c

a
s
t
d

(

Fig. 6. Example activity: moving a method between two classes

The obtained list of development activities is unlikely to reflect
ll the development activities of interest and applicable to struc-
ural UML models, but it has been found sufficient to study the
pproach and provided encouraging results during evaluation. The
dea is to provide an initial and stabilized rule catalog to the users
hat recognizes common development activities. If needed, further
ustomization of existing rules and the definition of new ones can
e done by a trained user. The strategy for improving the rule cat-
log is iterative:

(I) Identify a development activity to a model element that is not
currently supported by the existing rule catalog, but requires
traceability maintenance.

(II) Find all different sequences of elementary changes, in terms of
change type and impacted element type, that can be performed
within the supported modeling tool to execute the activity in
(I).

(III) Define each discovered way to perform the activity and com-
pose all alternative ways into one new rule.

IV) Define the necessary update to traceability relations and add
descriptive information to the rule (discussed in Section 5).

If one of the changes that take part in the development activity
s applied to an element of a type for which change events are not
et generated, or if not all required properties are captured in the
urrently issued events, then it is necessary to define that element
ype or required properties in the event configuration (described
n Section 4.4.1).

.2.2. Sequences of elementary changes
The aim is to recognize development activities in a flow of

hange events triggered by a developer working on a model. This
equires knowledge about valid sequences of change events to per-
orm an activity. This information can be gathered by finding out
bout the possibilities a CASE tool provides to change model ele-
ents. The following example illustrates that process with a simple

xample (see Fig. 6). The left part of the figure shows the model
efore the development activity and the right part shows it after
ompletion.

The method printOrder has been moved from class OrderMan-
ger to class Order. Such an activity can become necessary due to a
hift in the responsibilities of both classes. A modeling tool allows
he user to perform the activity in two alternative ways that cause
ifferent change events:
(I) Move the method by drag and drop. By performing the activity
in this way, the initial method is preserved. The move between
both classes can be identified by comparing the preMOD and
postMOD event generated during the change.

II) Deleting the initial method and adding a similarly named
one. By performing the activity in this way, the method
is being deleted (DEL event) and then recreated (ADD
event).
 and Software 85 (2012) 2205– 2227 2213

4.3. Abstract development activities

In theory, a solution to recognize development activities could
be defining exactly each activity that is intended to be recognized
but, in practice, the large number of different ways to perform
an activity makes that approach impracticable. It is necessary
to provide concepts that allow for those properties of a flow
of elementary changes that are not specific to the development
activity to be delineated, while still relying on those properties
that characterize the activity and distinguish it from others. An
abstract development activity is one that is compliant with all
valid ways to perform the activity, but not compliant with any
other. It is represented as a rule and incorporates the following
concepts:

• Masks – to allow a group of elementary changes with the same
characteristic properties to be defined.

• Property references – to allow abstracting from concrete property
values by defining dependencies between property values of two
events that have to have related.

• The EventCache – to allow abstracting from concrete orders of ele-
mentary changes by providing a history of recent incoming events
in order to compare events once enough information becomes
available.

• Alternatives – to allow the grouping of different sequences of
elementary changes constituting the same development activity.

While we were not able to simply reuse a whole existing nota-
tion, abstract development activities and traceability maintenance
rules incorporate several existing concepts. We considered graph
transformation rules as notation, but these are intended to match
a given, static state of a graph, while we are looking for a sequence
of changes to a graph. We do not claim that there is no other
notation that could be modified to our purpose, but we were
not able to find an out of the box solution that could simply be
applied.

4.3.1. Masks
A development activity consists of a number of elementary

changes. These changes have a distinct type (i.e., add, delete or
modify) and will be applied to a certain type of model element (see
Section 4.1). Furthermore, each change event provides a number
of additional properties that describe the changed element before
and/or after the change. Some of these properties are characteris-
tic for a development activity (e.g., for a certain activity the name
of an element has to stay the same before and after the activity),
but usually not all properties are relevant (e.g., the stereotypes
that are attached to a moved element may have no relevance).
In order to recognize a development activity, one wants to com-
pare incoming events generated due to model changes of the user
with predefined events belonging to known development activi-
ties. To prevent the necessity to define each concrete event that
could comprise a certain step of a development activity, masks
provide a way to define only the characteristic properties and so
a whole set of matching events. A mask defines those properties of
a matching change event that have to take certain values, while
ignoring those that may take any value. The construct is called
mask as it has some similarities with subnet masks used in the net-
working domain (see for example the RFC 950 standard). One can
imagine laying the mask over incoming events in order to com-
pare the properties defined within the mask with those of the
incoming event. The evaluation of all single property comparisons

provides a boolean result, whether event and mask are matching or
not.

Values of the properties can be defined as static expected val-
ues or as references to the properties of another mask within

2 stems

t
e
t
f
f
o
h
e
i
O

a
t
e
t
m
b
u
a
s

4

t
e
i
p
n
c
n
r

o
e
b
e
t
a
c
w
r
p

b
r
c
t
t
b
m
c
(

e

4

t
a

214 P. Mäder, O. Gotel / The Journal of Sy

he same development activity (see Section 4.3.2). Two prop-
rties of an expected event have to be defined for each mask,
he change type and the element type. This restriction results
rom the necessity to find a compromise between abstraction
rom concrete events in order to save effort for the definition
f rules and to keep the defined rules easily comprehensible by
umans to allow their customization. The following shows an
xample of a mask that matches with incoming change events
ndicating the deletion of a method named printOrder from a class
rderManager:

DEL(type=‘method’; id=*; name=‘printOrder’;
parent.type=‘class’; parent.id=*;
parent.name=‘OrderManager’)

The * symbol is a wildcard that defines a property that can have
ny value within an incoming event while still being compliant with
he mask. In the example, the id’s of the method and that of the
nclosing class as well as applied stereotypes to the method may
ake any concrete value in a compliant event. To be able to allow

ultiple valid values for one property, or to exclude certain values,
oolean logic is supported for the definition of property values. By
sing boolean logic, it is possible to allow any but one value for

 property (e.g., type=¡class’) or to allow for multiple values (e.g.,
tereotype=‘use’ || ‘realize’).

.3.2. Property references
Masks allow characteristic properties of an elementary change

o be defined. In most cases, this is not sufficient as a concrete
xpected value is not known at the time of rule definition. What
s known is the relation between elementary changes, for exam-
le, that a property of one elementary change has to have or must
ot have the same value as a property of another elementary
hange that participates in the same development activity (e.g., the
ame of the replacing element must be different from that being
eplaced).

The approach addresses this problem by allowing the definition
f the value within one mask as a reference to a value of a prop-
rty within another mask. This means that the value is expected to
e the same as or distinct from the value of the referenced prop-
rty of a change event that will be assigned to a different mask of
he same development activity. These references between masks
llow elementary changes to be related to one another. References
onsist of an identifier of the mask and the name of the property
ithin that mask that they refer to. In order to be able to resolve

eferences, circular references between two or more masks must be
revented.

The following example shows two masks with references
etween them. These masks work together to help match a
ule. An event that matches mask 1 would be any that indi-
ates that a method has been deleted from a class. An event
hat matches mask 2 would be any that informs about the addi-
ion of a method with the same name as the method that has
een assigned to mask 1 (mask 2: name=1.name). Furthermore,
ask 2 requires that the method has not been added to the same

lass that the one assigned to mask 1 has been deleted from
mask 2: parent.id=!1.parent.id).

(mask 1) DEL(type=‘method’; id=*; name=*; par-
nt.id=*;

parent.type=‘class’; parent.name=*)
(mask 2) ADD(type=‘method’; id=*; name=1.name;

parent.id=!1.parent.id; parent.name=*;
parent.type=‘class’)
.3.3. The EventCache
Identifying a development activity requires comparing at least

wo states of a model, before and after a change. This means that
t least two masks have to be defined as a change sequence to
 and Software 85 (2012) 2205– 2227

recognize a compound development activity. Such change
sequences can often be carried out via various orders of underly-
ing elementary changes. Referring back to the example of moving a
method, there is no difference in terms of the overarching applied
development activity if the method is deleted first from the ini-
tial class and added afterwards to the new class or vice versa. The
number of possible permutations is defined by the number of ele-
mentary changes contributing to a development activity and is
constrained by the existence of elements (e.g., an element cannot be
modified or deleted before it has been created and the correspond-
ing events in that case are not interchangeable). However, the order
in which a development activity is performed has no influence on
the characteristic properties of the triggered change events, which
means that they do not vary depending on the order in which a
development activity is performed.

This enables only one sequence of masks to be defined, indepen-
dent of the order in which events belonging to an activity arrive. The
order of the masks within the change sequence does not imply any
required order of the incoming events. Nevertheless, most masks
will be defined as dependent upon other masks by referencing val-
ues of their properties, which means that it might not be possible
to compare a matching change event immediately after its arrival
if the mask in question has references to another mask that has not
yet been assigned to an incoming event. To address this situation, a
number of past incoming events is held in an EventCache. The con-
crete process of comparing events with masks has been discussed
in Mäder et al. (2008b).

Having a set of past incoming events and a number of abstract
activity descriptions (defined as a set of masks) raises questions
about when and how to start comparing them. As discussed before,
references that one mask have to another can only be resolved if an
event has already been assigned to the referenced mask. To start
that mechanism, one mask within each change sequence is required
that must have no references. This mask is called the TriggerMask
and the assignment of an event to that mask triggers the recognition
process.

4.3.4. Alternatives
To address the issue of performing a development activity in

multiple ways, several change sequences can be grouped as one
rule that is able to recognize the same overarching development
activity. The different change sequences performing the same activ-
ity are called alternatives. Alternatives can be seen as a grouping
of similar change sequences transforming an initial state of model
elements into the same final state.

4.4. Rules

All the concepts discussed in Section 4.3 have been incorpo-
rated in the structure of rules and comprise a rule catalog. The rules
recognize development activities and hold information about the
necessary traceability update after recognition.

As an example of a concrete rule, Listing 1 shows the rule to
recognize the move of a method between two classes. The rule
definition contains a name, description, and two alternative ways
to perform the activity. The description is presented to the user
upon recognition of the activity, in cases where user interaction is
required. Numbers preceded by a percentage sign are placeholders
containing concrete model element information at runtime. Alter-
native 1 requires to delete the method from one class (mask T) and
to add it to another class (mask 1). The characteristic properties of
this change sequence are defined with mask 1, the added method

has to have the same name as the deleted one, it may not have the
same id as the deleted one and may not be added to the class it has
been deleted from. Alternative 2 requires to drag the method from
one class (mask T) and to drop it on another class (mask 1). The

stems

c
m
c
a

c

<

<

4

f
i
(
S
c
d
t
m
t
s
m
o
m
(

e
d
t
c
s

P. Mäder, O. Gotel / The Journal of Sy

haracteristic properties are also defined with mask 1, the dropped
ethod has to have the same id and may not be dropped over the

lass it has been dragged from. It is a rather simple rule, but shows
ll the main concepts.

Listing 1: Rule to identify the moving of a method between two
lasses

Rule id=‘9’>

<Name>Move method</Name>

<Description> %1 %2 was moved from %3 %4 to

%5 %6.</Description>

<Alternative id=‘1’>

<ChangeSequence>

<Mask id=‘T’ type=‘DEL’>

<Element type=‘method’/>

</Mask>

<Mask id=‘1’ type=‘ADD’>

<Element id=!T.id type=‘method’

name=T.name parent.id=!T.parent.id/>

</Mask>

</ChangeSequence>

<LinkUpdate> <!– see Section 5.2 –>

<UpdateSource relationsOn=‘both’>

T.id</UpdateSource>

<UpdateTarget relationsOn=‘both’>

1.id</UpdateTarget>

</LinkUpdate>

<DescriptionPlaceholders>

<Placeholder id=‘1’>T.ElementType

</Placeholder>

. . .
</DescriptionPlaceholders>

</Alternative>

<Alternative id=‘2’>

<ChangeSequence>

<Mask id=‘T’ type=‘preMOD’>

<Element type=‘method’/>

</Mask>

<Mask id=‘1’ type=‘postMOD’>

<Element id=T.id type=‘method’

parent.id=!T.parent.id/>

</Mask>

</ChangeSequence>

<LinkUpdate> <!– see Section 5.2 –>

. . .
</LinkUpdate>

<DescriptionPlaceholders>

. . .
</DescriptionPlaceholders>

</Alternative>

/Rule>

.4.1. Rule definition
The traceability maintenance rules are stored in the open XML

ormat. The definition of the rule catalog’s structure and of the
ncluded rules is distributed between an XML Schema Definition
XSD) and the event configuration that defines change events (see
ection 4.1). The schema describes the general structure of the rule
atalog and of all those elements of the catalog that are indepen-
ent of the supported model. The event configuration describes
hose parts of the catalog that are dependent upon the supported

odel elements, that is, the element types and respective proper-
ies that can be used for defining masks. Separating the catalog’s
tructure definition into an XML schema and event configuration
akes the approach and prototype implementation independent

f a certain model and allows the user to customize the support for
odel elements. Further information can be found in Mäder et al.

2008b).
The definition of rules can be challenging. For that reason, a rule

ditor was developed to assist with rule creation, editing and vali-

ation (see Mäder et al., 2009b). The editor validates rules against
he current catalog and event definition and performs automated
hecks to address common problems when evolving a rule catalog,
uch as:
 and Software 85 (2012) 2205– 2227 2215

(I) Structural issues – inconsistencies within the structure of the
rule catalog can be identified.

(II) Element type and property inconsistencies – unsupported ele-
ment types and properties of elements that are not part of the
event configuration can be found.

(III) Syntax errors within property values – the definition of prop-
erty values can be validated.

(IV) Reference specification errors – the existence of referenced
masks and properties can be checked.

(V) Reference dependency errors – to make a rule satisfiable, one
mask without references (i.e., the TriggerMask) is necessary,
along with an overall tree-like reference structure starting
from this mask, with no cyclic dependencies. This can be
checked.

(VI) Inclusion of rules – inclusions of one rule within the context of
another can be identified.

The editor further allows the update to the traceability relations
to be performed on the recognition of a development activity to
be specified. It also allows for any user notifications to be defined
where interaction is required.

4.4.2. ‘Good’ rules
A ‘good’ rule is one that is distinct, complete and satisfiable. It

is important to define a rule that distinguishes itself from other
rules. Therefore, it is necessary to find all those properties that are
characteristic for the development activity. It is also important to
understand and define all the ways a user may perform a given
development activity, transforming an initial model state into the
same final state, and capture all these ways within the rule.

The required properties comprising a mask can be defined as
boolean expressions, as discussed in Section 4.3.1. It is important
that these expressions are satisfiable (the SAT problem; Du et al.,
1997). Furthermore, the assignment of an event to a mask requires
resolving all references within the mask in order to be able to com-
pare it with incoming change events. These references form a graph
over all related masks of a change sequence. To make this struc-
ture resolvable and satisfiable it is necessary to have a non-cyclic
tree-like reference structure starting from a TriggerMask that has
no references.

One development activity might be completely part of another
(e.g., an unspecified association could be replaced by one directed
association or by two directed associations). In such cases, it is not
possible to define two distinct rules that permit one case to be rec-
ognized without the other. The solution is to have a rule for the
partial activity to guarantee that an action is performed, but also
a rule for the larger composite activity. To prevent false traceabil-
ity updates, it is only necessary during rule definition to keep in
mind that the partial rule might already be fired and the interim
action completed before the further rule is fired and the larger activ-
ity completed. The rule editor discussed in Section 4.4.1 provides
a function to automatically identify inclusions and to support the
user in the rule definition.

A change sequence within a rule defines expected changes in
order to recognize the overarching development activity. Obvious
questions are: what happens if the developer performs expected
changes to a model element as multiple, incremental changes; or
what happens if the developer is correcting a mistake? To answer
these questions, it is important to note that a mask does not define
an expected concrete change increment to an element, but a change

type and an expected state of the element afterwards, in terms of its
properties. This means that for multiple, incremental changes and
detours, an event is generated every time the developer commits
a change, but these events do not match with the mask defined

2 stems

w
s

4

m
s
(
t
c
b
t
2
t
2

4

i
o
t
t
u
f

4

t
n
m
m
t
e
n
t
d

t
c
b
c
c
e
s
m
e
n
c

u
a
l
a
o
s
a

4

b
e
d
l
a
t

trace(s) on new element.
• An existing node can be deleted from the graph. Traceability
216 P. Mäder, O. Gotel / The Journal of Sy

ithin the rule and so will be ignored until the event comes in that
hows the element in the expected state.

.4.3. Rule application
The task of matching elementary changes with traceability

aintenance rules requires an effective rule engine. Such reactive
ystems are built according to the Event Condition Action paradigm
ECA) (van Bemmel et al., 2004). This paradigm defines systems that
rigger an action after an incoming event has matched a defined
ondition. As this approach is not intended to react to a single event,
ut to react to patterns over the event history, a much more sophis-
icated rule engine with Complex Event Processing (CEP) (Luckham,
002) was necessary. This has been developed as part of the proto-
ype system that implements the approach (see Mäder et al., 2008b,
009b).

.5. Critique of Phase 1

The quality of the proposed approach to development activ-
ty recognition depends upon two aspects: (I) the completeness
f the rule catalog in terms of defined development activities and
he ways in which they could be achieved; and (II) the quality of
he defined rules, so the degree to which a rule correlates with the
nderlying development activitiy. Both aspects are discussed in the
ollowing sections.

.5.1. Expression power of rules
In this section we discuss the limitations of our technique in

erms of expression power. Our technique relies on the semi-formal
ature of the analyzed structural UML diagrams. That means known
odel element types and their properties, defined within the UML
eta-model. That information is used to relate elementary changes

o each other. Our masks allow using all these properties of model
lements to definite development activities. Limitation of our tech-
ology arises from whether the available properties are sufficient
o define a cohesive activity that can certainly be recognized and
istinguished from others.

We can state that the expressiveness was sufficient to define all
he discovered development activities during our initial study dis-
ussed in Section 4.2.1. Nonetheless, there are activities that cannot
e recognized with sufficient certainty. As example, we are dis-
ussing the splitting and merging of methods that are not currently
overed by our rule catalog. Methods are elementary, non-dividable
ntities within a structural UML model and as such do not offer
ufficient properties for recognizing their splitting or merging auto-
atically. As opposed to the splitting and merging of compound

ntities, e.g., classes, components, and packages, which is recog-
ized by a move of child elements, e.g., methods, attributes, and
lasses.

This limitation is acceptable as these are fine-grained activities,
sually performed on the source code level and not within analysis
nd design models. Our approach supports activities at the same
evel of granularity as the notation does. If we would extend our
pproach to development activities in source code, we could rec-
gnize the splitting and merging of methods by observing moves of
ource code parts between methods and so recognize the splitting
nd merging of methods.

.5.2. Completeness of the rule catalog
Through experimentation, the current rule catalog appears to

e stable (as discussed in Section 6). However, it is not possible to
nsure the completeness of all development activities in the catalog

ue to the semi-formal nature of UML models. The current cata-

og can provide a common set of rules for the supported model,
s the evaluation will show, but it is likely that it has to be fur-
her enhanced and improved. It can also be necessary to customize
 and Software 85 (2012) 2205– 2227

single rules to the specific needs of a developer (e.g., to support
different ways of refining elements). In this context, an incomplete
rule catalog means fewer traceability relations are maintained in
an automated manner than could be.

4.5.3. Quality of the rule catalog
The quality and correctness of the defined rules are very impor-

tant for the success of the proposed approach and will get even
more important as the catalog expands. Issues that may arise can
be classified into two generic categories:

(I) False recognition – a rule fires in situations it is not intended
for.

(II) Missing recognition – a rule does not fire in a situation where
it should.

Both problems can be caused by an issue that could be referred
to as finding the right abstraction between rule and development
activity. If a rule is too abstract and does not constrain properties
sufficiently, then it will fire in those situations where the sought
development activity has not taken place, potentially leading to
false changes to traceability relations. If properties are constrained
too much, a rule will not recognize the development activity in
all the ways it can be performed, potentially leading to missing
changes to traceability relations. These issues cannot be found
by analyzing the rule catalog, but they can be examined by per-
forming experiments and black-box tests with a given catalog. A
missing recognition can also be the result of syntax or reference fail-
ures within the rule specification. A missing recognition might also
happen due to unsatisfiable boolean expressions in the property
definition or due to unresolvable, circular dependencies between
masks. Both these issues are addressed by validation tests within
the rule editor.

5. Traceability relation maintenance

This section describes Phase 2 of the approach and its underlying
concepts.

5.1. Development activity types

Focusing on post-requirements traceability relations, each
related requirement spans a graph towards implementation arti-
facts (e.g., analysis elements, design elements and test cases).
The nodes of this graph represent related elements in the same
or different models, and the arcs represent traceability relations
between these elements. Each related requirement spans such a
tree. Fig. 7 depicts an example graph of two requirements and
their related implementing artifacts (red and green highlighted).
The graph also depicts possible changes to related elements and
their impact on existing traceability relations (gray shaded). The
directionality of the arcs expresses dependence between related
artifacts (see Section 2.1). Correlating to the development activity
types discussed in Section 4.2, the following changes and associ-
ated traceability updates to the graph are possible and depicted in
the figure:

• A new node can be added to the graph. Traceability update: create
update: remove trace(s) connected to deleted element.
• An existing node can be replaced by another node. Traceability

update: restoration of all traceability relations of the replaced
model element on the replacing element.

P. Mäder, O. Gotel / The Journal of Systems and Software 85 (2012) 2205– 2227 2217

+ add

> merge< split

– delete
repla ce

move
part

Artifa cts impleme nting R 1

Artifa cts impleme nting R 2

Before change a ctivi ty
After change a ctivi ty

Fig. 7. Example of two overlapping traceability graphs implementing two requirements (R and R), motivating different possible development activity types. The nodes of
t esign

•

•

d
t
a
o
t

t
p
h
i
c
p
e
m
m
b
c
e
o

s
m
t
a
c
(
g
e

5

m
r
m
s
t

5

t
h

he graph refer to the following element types: R – requirement, U – use case, D – d

An existing node can be split into two or more nodes. Traceability
update: copy traceability relations to all resulting elements of the
split activity.
Two or more existing nodes can be merged into one node. Trace-
ability update: combine the traceability relations of all merged
elements on the resulting element.

In addition to the changes before, consisting of adding and/or
eleting nodes, it is possible to change existing nodes. This means
o add or to delete sub-elements to nodes. These changes can have
n impact on the traceability graph as well. Fig. 7 depicts the moving
f a sub-element between two nodes and the possible impact on
he traceability relations of the containing nodes.

Structural UML models are hierarchical meaning that, except for
he root package, each other model element is part of an enclosing
arent element. Therefore, the discussed change activities always
appen inside one or more enclosing parent elements (e.g., a class

s being added to a package or a method is being deleted from a
lass). Moving one step higher in the hierarchy and looking at the
arent elements, each addition of a new element and deletion of an
xisting element is also a modification of the enclosing parent ele-
ent. Each of the development activity types discussed so far may
ove an element into a different parent element. Examples would

e moving a class into another package or splitting a class into two
lasses residing in different packages. Changing the context of an
lement may require copying or moving the traceability relations
n the element’s parent to the new parent.

In cases where more than one traceability relation reside on the
ource parent element(s), it is not possible to automatically deter-
ine which relation is impacted by a move and a decision from

he user is required. A dialog is provided to the user that shows
ll the traceability relations on the former parent element (old
ontext), along with options to delete them from the old parent
update source) and to create them on the new parent (update tar-
et). This approach provides the developer with the possibility of
ither leave, copy or move for each traceability relation.

.2. Update specification and execution

To enable the approach to perform traceability updates auto-
atically, it is necessary to provide update directives for each

ecognized development activity and to relate them to concrete
odel elements that hold the traceability relations. The process of

pecifying and executing the traceability updates is described in
he following.
.2.1. Specifying the update
A rule consists of mask sequences, representing different ways

o perform a development activity and information that specifies
ow to perform a traceability update once the defined activity has
1 2

 element and I – implementation element.

been recognized. This update information is not only specific to
a certain development activity, but also to the concrete change
sequence that has been recognized. This means that it is specific
to the different alternatives within a rule (see Section 4.3.4).

Update sources and targets are defined as property references
to element ids within masks for each alternative of an activ-
ity. The id identifies a model element and allows the retrieval
of traceability relations from the repository during the update
procedure. For each update source and each update target, an addi-
tional attribute relationsOn is defined. The attribute can have one
of the following three values: ‘element’, ‘parent’ or ‘both’. For an
update source, the attribute specifies which traceability relations
to take into account for an update, those of the defined source,
those of its parent element or those of both. For an update target,
the attribute specifies where to place the new traceability rela-
tions, on the target element itself, on its parent element or on
both.

During the update procedure, the relations of all providing
elements to all receiving elements are propagated. An excep-
tion is the combination where update source and target both
have their attribute relationsOn defined as ‘both’. In that case,
the relations on the update source element will be propagated
to the update target element and those of the update source’s
parent element will be propagated to the update target’s parent
element.

5.2.2. Executing the update
Once a development activity has been recognized, the rule

engine carries out the following steps to execute the necessary
update:

Step 1: Retrieve Impacted Relations – All the traceability relations
of all update source elements and/or their parent elements, as well
as those of all update target elements and/or their parent elements,
are retrieved (see Section 5.2.1). All these relations are added to
an update list which eventually provides information about all the
necessary changes to traceability relations. If no traceability rela-
tions exist on any of the update source elements, then no update is
required and the procedure ends immediately.

Step 2: Add New Relations to the Update List – Depending on
whether there are traceability relations on at least one of the update
sources, the update list is extended with potential new relations.
The underlying concept is to copy traceability relations that exist
on the update source elements to the update target elements, if not
already existing. For that process, each update source is compared
pair-wise in terms of existing relations with each update target,
and not yet existing relations are added to the list as proposed.
Step 3: Define an Update Action for Each Relation – The required
update action for each relation in the update list is determined.
Possible actions for proposed (i.e., not yet existing) relations are to
create or discard (no creation), and for currently existing relations

2 stems

a
d

D

D

D

D

D

f
i
r

5

o
d
l
p
t
t
m
a
i

u
f
g
p
m
f
m
F
m
s
t
t
c
m
o
w
t

5

t

218 P. Mäder, O. Gotel / The Journal of Sy

re to stay (no change) or delete. The required update action is
etermined according to the following directives:

1 The update action for relations on the update source(s) is
defined to stay if the source element still exists. It is defined to
delete if the element has been removed during the development
activity.

2 For relations on the parent element of update source(s), the
update action cannot be determined automatically in most
cases and the user is required to decide between stay and delete
for each relation. Optionally, for situations with exactly one
relation on the parent element, the action for this relation can
be defined to stay automatically.

3 Proposed relations on the update targets are defined to be cre-
ated.

4 For proposed relations on the parent element of update tar-
gets, no distinct action can be defined automatically and the
user has to decide between create and discard. Optionally, if
only one relation was existing on the parent element of the
update source, then this relation can be defined to be created
automatically.

5 All existing relations of all update target(s) and its parent ele-
ments are defined to stay. These relations are not impacted by
the development activity, but they are included in the update
list to provide the whole context of an update during user inter-
action.

Step 4: Execute the Update – In this step, all the actions defined
or the traceability relations in the update list are transformed
nto commands for the traceability relation repository. The relation
epository processes these commands and completes the update.

.2.3. Project-specific traceability maintenance
An issue that has not been discussed so far is the customization

f updates according to the intended traceability for a project, as
efined in the traceability information model. The specified cata-

og includes rules to recognize generic development activities with
ossible impact on traceability relations for a supported model. Fur-
hermore, the updates within each rule are defined in a general way
o update impacted traceability relations on all update source ele-

ents participating in the development activity. The idea is to have
 general catalog not requiring customization for each new project
n order to reduce the effort of using the approach.

A problem that could arise is that traceability relations are
pdated or created on elements that are not intended to be traced
or a given project. Even if a rule exists within the catalog and is trig-
ered by a development activity of the developer, an update is only
erformed if traceability relations exist on the update source ele-
ents. If the type of the update source element is not to be traced

or the given project, then no relation should exist on it. Due to
istakes of the developer or the tool, relations may exist anyway.

urthermore, there are rules defined within the catalog that copy or
ove impacted relations between different types of elements and

o could also create unintended relations. To avoid traceability rela-
ions that would violate the current traceability information model,
he traceability relation repository should validate any created or
hanged traceability relation against the project’s traceability infor-
ation model before performing the change. The customization

f allowed traceability relations for a project should only be done
ithin the traceability information model so as to define a project’s

raceability in one place.
.3. Critique of Phase 2

The approach is intended to support the developer in the main-
enance of traceability relations and to hence save tedious work.
 and Software 85 (2012) 2205– 2227

Even where interaction is required on the update, the user only
has to make a few simple decisions instead of navigating through
related models and searching for impacted traceability relations
and their related elements manually.

Even where automated, it is important to inform the user about
any automated changes to traceability relations. While the recogni-
tion of development activities happens in the background and goes
unnoticed, the traceability update may be perceived. Such an indi-
cation helps the developer to understand the approach and allows
for the validation of the development activity recognition and per-
formed automated updates. The knowledge about missing updates
allows traceability to be maintained manually where needed, to
prevent its decay. By recognizing incorrect or missing updates, rule
evolution is also possible.

6. Evaluation

This section describes an experiment that was undertaken to
evaluate the approach with respect to the manual effort that can
be saved and quality that can be reached with the maintained
traceability while implementing changes to a specific development
project. In the context of industrial use, there are two questions that
matter when considering an automated solution for traceability
maintenance. An adopter wants to know how much effort and cost
can be saved by the proposed solution and whether the result, the
maintained traces, is at least of comparable quality to that resulting
from manual maintenance. Eventually, even an automated mainte-
nance solution with significant effort savings will only be adopted,
if the overall costs of traceability within a development project are
less than the expected benefits. This break-even point is individual
for each project and this overall analysis is not within the scope of
this evaluation.

6.1. traceMAINTAINER prototype system

A prototype system called traceMAINTAINER has been imple-
mented to help evaluate the approach. traceMAINTAINER works
in the background while a developer works on software devel-
opment using structural UML diagrams. It generates change
events for elementary model changes and recognizes develop-
ment activities. Once a development activity has been recognized,
traceMAINTAINER performs the necessary maintenance to impacted
traceability relations, with user interaction if necessary. Such user
interaction is basically the only situation where an everyday user
sees the prototype system. Fig. 8 shows that dialog for the develop-
ment activity of moving a method between two classes. It requires
the user to decide between alternative ways of updating the trace-
ability relations. For setting-up and customizing the recognition
and update process, the prototype system provides additional com-
ponents that allow, for example, the editing and validation of rules.
traceMAINTAINER is described more fully in Mäder et al. (2009b),
Mäder et al. (2008c).

6.2. Industrial validation

We established a cooperation with Siemens in the Czech Repub-
lic in order to get information about the usefulness of the approach
in industrial practice. The cooperating group fulfilled all the precon-
ditions for applying the approach in their projects (i.e., model-based
development using a UML modeling tool and having established
traceability relations). The leader of this group agreed to apply the
approach on two different projects over the course of one year.
This cooperation delivered valuable input for improving the
approach and insight into traceability practice within the particu-
lar projects. Apart from technical feedback regarding improvement
of the approach, we also received qualitative feedback on the

P. Mäder, O. Gotel / The Journal of Systems and Software 85 (2012) 2205– 2227 2219

2•1 «is linked»
Order

+ printOrder() : void

OrderManager

«is linked»
CreateOrder

0•1

«is linked»
PrintOrder

0•1

«is linked»
OrderHandling

1•0

«trace»

«trace»

«trace»

r inte

a
a
a
t
b
d
d
b

d

6

a
t
e
t

6

m
b
t
t

t
a
w
i
l
o
i
c
t
a
t
w

Fig. 8. Semi-automated traceability update with use

pproach from practitioners at Siemens who were piloting the
pproach. Practitioners told us that they felt supported by the
pproach in maintaining traceability. Furthermore, they liked
he fact that the approach was working automatically in the
ackground, in most cases without user interaction. However, it
elivered no measurable data. The reason was that the model under
evelopment was not accessible to people outside Siemens, so no
aseline was available against which to compare results.

The controlled experiment described in the next section was
eveloped in order to get measurable results.

.3. Experimental set-up

We designed a controlled experiment in order to validate our
pproach. The experiment has one independent variable (the use of
raceMAINTAINER) and two treatments (tM, no − tM). The aim of the
xperiment was to answer the two research questions described in
he following.

.3.1. Research question 1: manual effort
Does use of the approach reduce the manual effort necessary for

aintaining traceability relations? While no manual effort would
e a desirable target, evidence is sought of a reduction greater than
he time necessary to configure and learn how to interact with
raceMAINTAINER to make use of the approach worthwhile.

Measures: The manual effort for traceability maintenance refers
o the time the developer spends on this task. It comprises: thinking
bout the maintenance task (including recognizing it); navigating
ithin the models; and performing the required changes. Measur-

ng the time taken for these sub-tasks is problematic given the
ack of access to thought processes and the inter-weaved nature
f the sub-tasks with the modeling tasks that cause the traceabil-
ty maintenance to be required. Attempting to gain data about the
omplete traceability maintenance effort would require the user

o provide additional information that allows distinguishing trace-
bility maintenance from modeling. The intention of the selected
asks was to capture realistic data in a full modeling scenario
ithout drawing the attention of our participants exclusively to
raction after moving a method between two classes

traceability maintenance. As an indicator of effort, the number of
performed changes to the set of traceability relations was recorded
(manual changes for both treatments and automated changes for
the tM treatment), along with the time spent responding to trace-
MAINTAINER dialogs. The dependent variables recorded in order to
answer research question 1 were:
nM+ Number of manually added relations to the link-set (the set of

traceability relations).
nM− Number of manually deleted relations from the link-set.
nA+ Number of automated added relations to the link-set.
nA− Number of automated deleted relations from the link-set.
nUI Number of user interactions with traceMAINTAINER before

maintaining the link-set.
tUI Elapsed time between opening an interaction dialog and the user’s

response to it.

For subjects of the no − tM treatment, only nM+ and nM− are avail-
able and were recorded, while for subjects of the tM treatment all
variables were recorded.

Metrics: The number of manual changes to relations is the source
for estimating the time and costs the developer spends on main-
taining traceability. To be able to compare the number of manual
changes among subjects of both treatments, the following metric
compares the manual changes (cumulated added and deleted rela-
tions) for both treatments as a relative percentage of changes for
the tM treatment:

rel. nM(tM) = nM(tM) − nM(no − tM)
nM(no − tM)

· 100 (1)

where

nM = nM+ + nM− (2)

The rel . nM(tM) metric does not take into account that manually
adding a relation usually consumes more time then manually delet-
ing a relation. Furthermore, the time that the user spends to react
on a traceMAINTAINER update dialog tUI is not taken into account.
The time to undertake a manual change could not be measured

precisely as discussed before.

For those reasons, we conducted a small experiment with
ten subjects. Each subject was required to create ten new traces
between given model elements, to remove ten existing traces, and

2220 P. Mäder, O. Gotel / The Journal of Systems and Software 85 (2012) 2205– 2227

Table 1
Tested hypotheses to answer research question 1.

t
e
c

t

T
o
d
r
p
o
e
m

r

p

1
r
t
g
(
t
i
e
5
h

6

e
r
u

i
w
i
F
a
l
i
e
t
e
t
b
w
b
t
w
t

�
�
�

o
w

Table 2
Tested hypotheses to answer research question 2.

Variable Null hypothesis H0 Alternative hypothesis Ha

model relations and no requirements/implementation relations).
The relations are always directed from the dependent to indepen-
dent model. Use cases and classes have to be related by at least
one relation. Attributes, methods, components and packages can

Table 3
Project models, diagrams and elements.

Requirements
model

Design
model

Implementation
model

Diagrams
Activity 7 – –
Class 1 6 6
Package – 1 1
State charts 3 – –
Sequence – 5 –
Use case 3 – –
Elements
Variable Null hypothesis H0 Alternative hypothesis Ha

nM nM(tM) ≥ nM(no − tM) nM(tM) < nM(no − tM)

o respond to ten user interactions. Based on the results of that
xperiment, the comparable effort of the three direct measures was
orrelated as follows:

M+ ≈ 2 · tM− ≈ 2 · tUI. (3)

he correlation says that a user, on average, spends half the time
n deleting a relation and on reacting to a traceMAINTAINER update
ialog than she/he spends on creating a new relation. Using this
elation to weigh the number of manual changes nM+ and nM−
erformed by subjects of both treatments, and using the number
f user interactions nUI for the tM group, an approximate relative
ffort rel . E(tM) for the tM treatment in relation to the no − tM treat-
ent can be computed as follows:

el. E(tM) = nM+(tM) + 0.5 · nM−(tM) + 0.5 · nUI(tM)
nM+(no − tM) + 0.5 · nM−(no − tM)

(4)

Both metrics have been computed for the gathered data and are
rovided in Sections 6.4 and 6.5.

Hypothesis: The null hypothesis H0 regarding research question
 was that the number of manual changes to the set of traceability
elations nM performed by the experimental group tM is greater
han or equal to the number of changes performed by the control
roup no − tM (see Table 1). We expect that the use of the approach
independent variable) will reduce the number of manual changes
o the set of traceability relations nM (dependent variable) – this
s the alternative hypothesis Ha. If the data gathered during the
xperiment supports the null hypothesis H0 with a probability of
% or less then this hypothesis would be rejected and the alternative
ypothesis Ha considered.

.3.2. Research question 2: maintenance quality
Do the traceability updates performed by the approach, in coop-

ration with the user where required, result in a set of traceability
elations of comparable or better quality to those maintained man-
ally?

Measures: An agreed baseline is required to determine the qual-
ty of a set of traceability relations. Here, the baseline refers to what

ould have been the correct and required changes to the traceabil-
ty relations following the changes performed to the related models.
or this experiment, the baseline was individual for each subject
nd her/his individual solution to the modeling tasks. These base-
ines were determined after the experiment by the experimenters
n a labor intensive procedure. The guidelines for determining
ach baseline were the traceability information model and the
ask description given to the subjects. In cases of ambiguity, two
xperimenters decided about the correctness or incorrectness of a
raceability relation. The experiment and baseline were prepared
y the first author of the paper and by a graduate student, both
ith multi year experience in requirements engineering, model-

ased development, and requirements traceability. According to
he baseline, three types of changes to the traceability relations
ere distinguished and represent the dependent variables cap-

ured to answer research question 2:

c Changes that have been performed correctly according to the baseline.
i Changes that have been performed incorrectly.

Missing changes that have not been performed.
m

Metrics: To be able to compare the correctness and completeness
f the changes among the subjects and treatments, two metrics
ere computed that are commonly used to evaluate approaches
QP QP(tM) ≤ QP(no − tM) QP(tM) > QP(no − tM)
QR QR(tM) ≤ QR(no − tM) QR(tM) > QR(no − tM)

dealing with uncertainty in recognition processes: precision and
recall. Precision relates correct changes to all performed changes
and informs the correctness of performed changes:

QP = �c

�c + �i
(5)

Recall relates correct changes to all required changes and informs
the completeness of performed changes:

QR = �c

�c + �m
(6)

Hypothesis: The null hypothesis H0 regarding research question
2 was that the values of the metrics Precision QP and Recall QR

for the tM treatment are less than or equal to those of the no − tM
treatment (see Table 2). The alternative hypothesis Ha states that
the precision and recall of changes are greater for the tM treatment.

6.3.3. Development project
The experiment was conducted on models for a mail-order

system described as UML diagrams. These models described a com-
pleted project implemented in Java. The project had initially been
developed as seminar work (Dommasch and Duhme, 2004) and was
reverse engineered and enhanced into a complete model-based
development project for the Enterprise Architect modeling tool.
The project artifacts included models on three levels of abstraction:
requirements, design and implementation. All diagrams of interest
are shown in the appendices of Mäder (2009). The models pro-
vided information to a level of detail that one would expect at the
end of the design phase, including use case diagrams, interaction
diagrams and class diagrams. The diagrams and their elements are
listed in Table 3. Please note that only the class and package dia-
grams were expected to be maintained by the subjects. Behavioral
diagrams were not related by traces and, accordingly, were only
available to provide the best possible information about the sys-
tem to the subject. The set of traceability relations for this project
relates the three models and consisted of 214 traceability relations.
The initial linking was undertaken according to a traceability infor-
mation model for the project that was also provided to the subjects
of the experiment. This stated that only relations between require-
ments/design and design/implementation are valid (i.e., no intra
Attributes 23 73 150
Classes 15 41 63
Methods – 124 280
Packages – 5 5

stems

b
f

6

e
t
u
m
a
a
e
a
i
d
t
t
fi
o
t

1

2

3

a

6

w
n
a
c
b
t

6

l
t
a
u
d
a
m

6

t
b
a
a
(
a
d
a
a
r

P. Mäder, O. Gotel / The Journal of Sy

e related to any other element, as long as the preceding rules are
ollowed.

.3.4. Modeling tasks
Three maintenance tasks were to be performed on these mod-

ls, in a fixed order, adding new features of practical value
hat would impact every part of the system. Although the
nderlying source code was made available within the imple-
entation model, the tasks only required changes to the design

nd implementation models. Based on a pilot study with four
dditional master students, covering a spread of development
xperience, it was estimated that it would take 2–3 h to complete
ll the tasks. Subjects were permitted to perform the tasks accord-
ng to their ideas and experiences to capture a realistic spread of
ifferent solutions to the same problem. This means that the solu-
ions would not be comparable per se. The correctness analysis
herefore required inspecting each individual model in order to
nd out about correct, incorrect and missing changes to the set
f traceability relations. The subjects had to perform the following
asks:

. Enhance the system’s functionality to distinguish private and
business customers and also to handle foreign suppliers.

. Extract the two layers, view and data, of the system’s three-layer
architecture into separate components.

. Enhance the system’s functionality to handle additional product
groups (e.g., print media and consumer electronics) and provide
functionality to categorize products according to content cate-
gories.

The task descriptions and the questionnaires are available in the
ppendices of Mäder (2009).

.3.5. Subjects
The subjects comprised 16 computer science students with a

ide range of experience in UML and model-based software engi-
eering. All the students were taking a course on software quality
nd were either in the 4th or 5th year of their diploma (Masters
omparable). The subjects were partitioned into two groups of 8,
ased upon prior experience, to distribute expertise equally across
he two treatments.

.3.6. Data gathering
Data were gathered via three questionnaires. For both groups, a

og file was created by traceMAINTAINER containing all the elemen-
ary changes performed by the subject, all changes to the link-set
nd information about how often the subject navigated the models
sing traceability relations. For the tM group, a log of all recognized
evelopment activities, the user decisions on interactions and all
utomatically performed traceability updates was also created. The
odels of all the subjects were available for the analysis.

.4. Results

Fig. 9(a) depicts the number of manual changes nM to the
raceability relations for each single task and across all tasks for
oth treatments as a box plot. The information is also displayed,
long with additional statistical measures, in Table 4, as vari-
ble nM+ + nM−. The table shows, for each variable, the minimal
min), median, arithmetic mean and maximal (max) value sep-
rated according task and treatment. Furthermore, the standard

eviation (sd) of the values within one treatment and the percent-
ge difference between the mean values (% diff) of both treatments
re depicted where appropriate. Fig. 9(b) depicts the number of
esponses to the traceMAINTAINER update dialog for each task and
 and Software 85 (2012) 2205– 2227 2221

across all tasks for the tM treatment. This information is also dis-
played in Table 4 as variable nUI. Fig. 9(c) and (d) depicts the
measured precision QP and recall QR values for each task and across
all tasks for both treatments as box plots. This information and
additional statistical measures are also displayed in Table 4.

Univariate analyses of the dependent variables were performed
to test the hypotheses, both individually for each task and across
all tasks. For all the dependent variables nM, nA, nUI, QP and QR,
two-sample t-tests were performed. The preconditions of the t-test,
normality and equality of variances, were given for the measured
data. For normality, we tested with the one-sample Kolmogorov-
Smirnov procedure and for the equality of variances we tested with
the Levene’s test. The level of significance for the hypotheses tests
was set to ̨ = 0.05. P-values are provided in the t-test column of
Table 4. One subject from each group had to be excluded from the
analysis because they did not provide a minimal solution to each
modeling task. This precondition was required in order to compare
results between all subjects.

6.5. Discussion

Within this section, the results presented in Section 6.4 are dis-
cussed separately in relation to the research questions.

6.5.1. Research question 1: manual effort
When examining the number of manual changes nM to the link-

set over the three tasks, the tM group performed far fewer changes
(rel . nM(tM) =− 82 %) than the no − tM group (see Table 4). This dif-
ference is statistically significant (p − value < 0.01). The result is
similar for each single task.

Comparing the overall number of changes for both treatments
(both manual and automated for the tM treatment), the figures
show that the no − tM group performed only half as many changes
(nM(no − tM) = 36.3) than the tM group’s combined total of manual
and automated changes (nM(tM) + nA(tM) = 6.6 + 59.6 = 66.2) for all
tasks. The explanation for that behavior is that traceMAINTAINER
recognizes small incremental change activities and updates trace-
ability relations immediately (in the background) after recognition.
This means that the changes reflect each detour of the developer, in
contrast to manual maintenance where the update is typically per-
formed after completing the whole task. Although the developer’s
strategy results in fewer changes and seems to be the better one, it
is important to note that a developer is able to recognize semantic
relations between model elements and to validate traceability rela-
tions at any time. In contrast, our automated approach discussed
here has to follow each incremental change in order to update
relations. The time to undertake a manual change could not be mea-
sured precisely because it is not clear when the developer starts
to think about a change task. This effort was estimated indirectly
via the manually created relations, the manually deleted relations
and the user interactions. This measure provides an approxima-
tion to the saved effort by using traceMAINTAINER, as shown in
Table 4. The values show that, across all tasks, the subjects of the
tM treatment spent only rel . E(tM) = 29% as much manual effort
on maintaining traceability as the subjects of the no − tM treat-
ment. The higher value of rel . E(tM) = 52% for task 2 results from
the nature of the task that required a large number of move activ-
ities with impact on traceability relations of the parent elements
(see Section 6.3.4). The traceability updates associated with these
activities required a relatively large number of interactions with the
user nUI = 6.2 that, in combination with the low number of man-
ual changes (nM(tM) = 0.8 vs . nM(no − tM) = 7.7), led to the higher

relative effort of rel . E(tM) = 52% for task 2.

Overall, a decrease of 71% manual effort for the maintenance
of traceability relations for the discussed experiment is seen
as positive regarding the goal to reduce the manual effort for

2222 P. Mäder, O. Gotel / The Journal of Systems and Software 85 (2012) 2205– 2227

all 1 2 3

0
10

20
30

40
50

60

Task

N
um

b
er

 o
f m

an
ua

l c
ha

ng
es

all 1 2 3

0
10

20
30

40
50

60
no−tM
tM

(a) Ma nual change s for bot h treatme nts

all 1 2 3

0
5

10
15

Task

N
um

b
er

 o
f u

se
r i

nt
er

ac
tio

ns
 (t

M
)

(b) Use r interaction s for tM treatm ent

all 1 2 3

0
20

40
60

80
10

0

Task

Pr
ec

is
io

n
[%

]

all 1 2 3

0
20

40
60

80
10

0

no−tM
tM

(c) Preci sion for bot h treatme nts

all 1 2 3

0
20

40
60

80
10

0

Task

Re
ca

ll
[%

]

all 1 2 3

0
20

40
60

80
10

0

no−tM
tM

(d) Reca ll fo r bot h treatm ents

F nts (b
b

m
t
a
e
)
f
w
w
r
r
w
u

6

a
s
a
t
p
o
h
r

ig. 9. Results of the experiment as box plots. (a) Manual changes for both treatme
oth treatments.

aintaining traceability relations, especially as the subjects of the
M treatment spent only a few minutes on their training session
bout the approach. To find out whether this decrease is large
nough to facilitate a broader use of traceability and such (semi-

 automated maintenance in practice remains to be evaluated in
uture industrial studies. After the experiment, all but one subject
orking with traceMAINTAINER stated that they felt comfortable
ith the technology after a short time and that they did not expe-

ience conflicts or disturbance by the automated updates. The
emaining subject said that it was sometimes difficult to know
hether an automated update would occur or whether a manual
pdate was called for.

.5.2. Research question 2: maintenance quality
The computed precision QP and recall QR provide information

bout the correctness and completeness of changes to the link-
et (see Table 4). The results show that the tM group reached

 precision QP> 95 % for all tasks, with a low standard devia-
ion (sd(QP) = 2.5–6.5%). This value is 21% higher than the average

recision value of the no − tM group across all tasks. Values
f precision lower than 100% indicate that incorrect changes
ave been performed to the link-set. We analyzed these incor-
ect changes and found that among all the changes performed
) User interactions for tM treatment (c) Precision for both treatments (d) Recall for

by traceMAINTAINER, no incorrect ones were found. All incor-
rect changes within the tM group were manual changes of the
subject. Please note that our approach automates only the main-
tenance of existing traceability, but the general nature of our
tasks required also the addition of completely new elements and
accordingly the creation of new traces. Precision and recall mea-
sure the overall quality of all link changes performed during the
experiment.

Recall of changes measures whether all necessary changes
have been performed. Across both groups and all tasks, not all
required link changes were performed (all recall values lower than
100%) showing that subjects of both treatments missed addition-
ally required manual link changes. The average values per task
are more diverse than the precision results. For tasks 1 and 3, the
no − tM group reached higher values of recall (6 and 11%) than the
tM group. An analysis of the results showed that all our rules fired
as intended and indicates that subjects working with our auto-
mated approach relied on that support and missed more of the
additionally required manual changes. We wanted to explore the

capabilities of the approach without putting the focus of subjects
too much on our approach. Accordingly, we did not explain all con-
cepts of the approach, nor how and when automated updates are
to be expected. That approach might have actually influenced the

P. Mäder, O. Gotel / The Journal of Systems and Software 85 (2012) 2205– 2227 2223

Table 4
Number of changes to traceability relations and number of user interactions during traceability update (upper table) and precision and recall of changes to traceability
relations (lower table).

Task Variable Treatment Min Median Mean Max sd % diff t-Test Rel. effort

1

nM+ + nM− no − tM 6 21 18.6 32 9.5 −87% <0.01 18%
tM 0 3 2.4 4 1.8

nA+ + nA− tM 0 38 36.2 65 23.9
nUI tM 0 1 2.0 5 2.0

2

nM+ + nM− no − tM 2 6 7.7 16 4.9 −90% 0.01 52%
tM 0 0 0.8 4 1.8

nA+ + nA− tM 8 14 13.0 17 3.3
nUI tM 2 4 6.2 14 4.9

3

nM+ + nM− no − tM 5 10 10.0 16 4.7 −66% 0.04 33%
tM 0 0 3.4 9 4.7

nA+ + nA− tM 2 7 12.4 37 14.0
nUI tM 0 1 0.8 2 0.8

All

nM+ + nM− no − tM 22 34 36.3 62 12.8 −82% <0.01 29%
tM 3 5 6.6 12 3.8

nA+ + nA− tM 19 51 59.6 114 34.7
nUI tM 4 9 9.0 15 4.1

Task Variable Treatment Min Median Mean Max sd % diff t-Test

1

QP no − tM 0.0 95.7 78.9 100.0 36.5 21% 0.34
tM 87.8 100.0 95.7 100.0 6.0

QR no − tM 0.0 96.3 78.0 100.0 36.3 −6% 0.82
tM 20.0 74.4 73.3 100.0 32.7

2

QP no − tM 15.4 100.0 83.3 100.0 31.0 19% 0.29
tM 94.4 100.0 98.9 100.0 2.5

QR no − tM 14.3 50.0 59.5 100.0 35.3 51% 0.10
tM 70.0 100.0 90.0 100.0 14.1

3

QP no − tM 0.0 100.0 81.6 100.0 37.5 17% 0.44
tM 85.7 100.0 95.6 100.0 6.5

QR no − tM 0.0 83.3 76.2 100.0 35.8 −11% 0.67
tM 25.0 66.7 67.8 98.6 27.3

All

QP no − tM 27.3 90.3 79.5 100.0 25.7 21% 0.19
tM 90.3 96.1 95.9 100.0 4.3

QR no − tM 23.1 80.6 71.3 100.0 27.6 11% 0.61
78

q
e
m
a
w
t
g
(
e
t
p
r
r
e

m
i
v
t

6

(
s
s
p
e
W

tM 51.1 80.0

uality results of the tM group, as they did not exactly know when to
xpect automated updates and when they were required to update
anually. What we learned from that finding is that users require

 good tutorial on when to expect automated maintenance and
hen they are required to create relations manually. For task 2,

he no − tM group had a recall of only 59.5% versus 90% in the tM
roup. That task required large structural changes to the model
see Section 6.3.4) with high impact on the traceability relations of
lements and their parent elements. A possible explanation is that
he subjects working manually were not able to remember all the
re-existing traceability relations before their changes in order to
e-establish them after the changes. This explanation would cor-
elate with results from the inspection of the models after the
xperiment.

However, any differences between the two treatments for both
easures are not statistically significant (compare column t-test

n Table 4). Nevertheless, the aim of the approach was to pro-
ide maintenance quality that is comparable to that reached by
he developer manually.

.5.3. Dependence on the subjects’ experience
In addition to the previous analyses, an analysis of variances

ANOVA) exploring the combined effect of the treatment and the
ubjects’ experience on the number of manual changes to the link-

et nM, the precision of changes QP and the recall of changes QR was
erformed. The aim was to find out whether the subjects’ experi-
nce had also a significant impact on the results of the experiment.
e performed separate ANOVAs for each dependent variable and
.8 99.3 19.0

for each task as well as across all tasks. Table 5 shows the p-values of
all these analyses. The values within the confidence level of ̨ = 0.05
are marked in bold.

The results show that the number of manual changes depends,
for each single task and across all tasks, upon the treatment (see p-
values in the treatment row of Table 5). This finding has already
been discussed in Section 6.5.1 and there is no significant dif-
ference in precision and recall depending on the treatment (see
Section 6.5.2). Regarding the dependence of the three variables
(nM, QP and QR) upon the experience of the subject (see p-values
in the experience row of Table 5), the impact was not signifi-
cant, except for the recall of task 1. For task 1, the experience of
the subject had a significant impact on the recall QR the subjects
reached with their changes. This means that more experienced
subjects reached a better recall QR of their changes to traceabil-
ity relations than less experienced subjects here. This correlation
has only been found for task 1 and a p-value of 0.05 shows only
a weak significance. Overall, the analyses show that the experi-
ence of the subjects had almost no impact on the results (number
of manual changes to the link-set nM, precision of changes QP and
recall of changes QR). To be able to generalize these findings, addi-
tional experiments with a larger population of subjects would be
required.
6.6. Threats to validity

This section discusses what is considered to be the most impor-
tant threats to the validity of the discussed experiment.

2224 P. Mäder, O. Gotel / The Journal of Systems and Software 85 (2012) 2205– 2227

Table 5
Analysis of variance (ANOVA) of the treatment and the experience of the subject on the dependent variables.

Dependent variable

Independent variable Manual changes nM Precision QP Recall QR

All 1 2 3 All 1 2 3 All 1 2 3

Treatment 0.00 0.00 0.02 0.05 0.17 0.32 0.32 0.42 0.58 0.79 0.12 0.65
.17

6

t
o
p
y
m
S
a
b
s
e
w
s
w
t
m
d
d
m
n
l

6

s
m
c
e
t
h
e
s
t
i
d
b
u
k
g

6

t
e
t
u
t
t
j
w
s
a
e

Experience 0.25 0.11 0.57 0.67 0

.6.1. External validity
The issue of external validity concerns whether a causal rela-

ionship holds over variations in persons, settings, treatments and
utcomes that were either in the experiment or not. From a task
erspective, the reported experiment is realistic. Students (future
oung professionals) were working on a real project, using com-
ercial tools and implementing demanding tasks. We used the

parx Enterprise Architect modeling tool, which is commercially
vailable and has a very large (>100k), globally distributed user
ase. A brief survey on the tracing functionality of UML tools
howed that it is comparable among common modeling tools. Nev-
rtheless, it is hard to draw conclusions to a wider population
ithout more studies. The results reflect more a tendency that

hows the potential of the approach. There are threats associated
ith the short time the subjects spent on the experiment (3 h) given

he task complexity. However, it was not the focus of the experi-
ent to set trivial tasks with obvious changes. A high-level task

escription enabled a variety of ways to solve the problem, but
emanded effort to analyze and evaluate the data (55k lines of log
essages and 16 different models). Without sophisticated tech-

iques, it would be complicated to run an experiment lasting much
onger.

.6.2. Internal validity
Internal validity is concerned with establishing a causal relation-

hip, here between the use of traceMAINTAINER and the number of
anual changes to the link-set. Based upon prior experience, we

reated two groups with equal distribution regarding the experi-
nce factor. One group was assigned to the tM treatment, the other
o the no − tM treatment, creating a balanced design. In order to
ave comparable results among participants, it was necessary to
xclude one subjects from each treatment after the experiment
ince they did not solve the modeling tasks completely, making
heir results not comparable. The potential influence of the facil-
tators was addressed by providing an initial briefing and task
escription in written form only. The difference in the material
etween groups was marginal, the addition being how to react on a
ser interaction for the tM group. None of the subjects had any prior
nowledge of the approach nor did they know the experimental
oals.

.6.3. Construct validity
Construct validity refers to having established correct opera-

ional measures for the constructs being studied. To investigate the
ffect of the approach on the effort for maintaining traceability rela-
ions after the evolution of related UML models it is necessary to
se the UML as intended. The UML offers an open set of description
echniques with many ways to apply them. In this experiment, six
ypes of diagram at different levels of detail were used, the sub-
ects had state-of-the-art education in UML development and a
idely distributed CASE tool was used. The debriefing interview
howed that almost all the subjects became familiar with the tool
fter their prior tutorial. The examination of the resulting mod-
ls showed that, except for two cases (explained before), all the
0.21 0.78 0.23 0.12 0.05 0.68 0.14

subjects were able to edit and evolve the UML models in a manner
comparable to industrial practice.

To investigate the effort for maintaining traceability relations,
we decided for an indirect measure, i.e., counting the number of
manual link changes and user interactions. To emulate a realistic
setting we demanded model maintenance tasks, not traceability
maintenance tasks, so we were unable to distinguish the time spent
on traceability maintenance from the remaining time for solving a
task. The disadvantage of that decision is that we cannot compute
concrete time differences based upon our data, only the relative
differences in effort. We found that trade-off acceptable, though
further studies could focus on concrete time differences.

To investigate the correctness of the changes to the link-set, the
main problem with comparing traceability is the lack of an agreed
standard. Therefore, a traceability information model was provided
to give guidance on how to establish traceability for the project. The
initial creation of traceability relations was done according to the
model and the subjects were required to do likewise. In order to
gain comparable results, further restrictions were made as to the
minimal number and direction of relations (see Section 6.3).

6.6.4. Reliability
It is expected that replications of the experiment should offer

results similar to those presented in this section. Of course, con-
crete measured values will differ from those presented here as they
are specific to the subjects, but the underlying trends and implica-
tions should remain unchanged as the analysis showed that the
experience of the subject had little influence on the results. Fur-
thermore, pilot studies executed with two additional developers on
two projects (described in Mäder et al., 2008a,b), showed similar
results and so support the findings.

7. Critical review and future work

While seeking evaluation partners for the approach, two inter-
esting perspectives arose when talking with practitioners from
Siemens who were responsible for traceability within develop-
ment projects. After an explanation of the approach, one individual
replied: “I do not think that I like an automated solution for this
sensible task. I want people to think about their changes again
while maintaining traceability.” A second individual replied: “that
is exactly the solution I was waiting for, it can save us a lot of
work”. This reflects the fact that the decision for or against a (semi-)
automated approach to traceability maintenance is individual. The
developed approach can save tedious and error-prone work, but
it should not be seen as a solution that makes the maintenance of
traceability relations something that the developer does not have
to think about anymore, as there may be intrinsic value in that
activity. Potential limitations of the approach are examined in this
concluding section, with obvious implications for future research.
7.1. Assumptions of the approach

Section 3.2 lists the assumptions that were made while devel-
oping the approach. These assumptions refer to the development

stems

p
U
t
i
r
(
t
u
m
(
t
t

7

m
a
c
i
i
o

7

c
i
o
c
w
t
a
n
b
n
b
w
fi
s
d
t
i
r

7

t
a
i
s
f
t
b
r

7

o
m
w
m
r

P. Mäder, O. Gotel / The Journal of Sy

rocess of a project and require model-based development, using a
ML modeling tool and the application of traceability in accordance

o a traceability information model. Except for the traceability
nformation model, this is exactly the scenario that has been
eported by nine of the ten interviewed companies in a survey paper
Mäder et al., 2009c). The extension of the approach to additional
ypes of diagrams and models remains a future task. Regarding
se of a traceability information model, a major problem is the
issing support for such definitions within common CASE tools

Ritze, 2008). For the evaluation of the approach, the support of a
raceability information model has been integrated into the proto-
ype tool.

.2. Predefined rule catalog

A limitation of the approach is that only predefined develop-
ent activities can be recognized and these are unlikely to reflect

ll possible development approaches, so it will be necessary to
ustomize and extend the rule catalog. In order to address this
ssue, a rule editor is provided with sophisticated checks to val-
date changes to rules. Nevertheless, this task remains a manual
ne.

.3. Scope of and threats to empirical studies

It is a future exercise to gain more statistical data on the
ost/benefit trade-off of the approach, costs in terms of customiz-
ng and extending the rules, and benefits in terms of the time saved
n manual maintenance across all projects using the rules. The dis-
ussed experiment showed a substantive saving of manual effort
hile using the existing rule catalog. Unfortunately, no informa-

ion is available about how much work of a development project
ccurately relates to evolving related models and triggering the
ecessity for traceability maintenance. Such information can only
e gained by performing studies in real projects. There is clearly a
eed for empirical work here and gaining that information should
e a future research topic for the traceability community. While
e cannot provide concrete figures, we can refer to the often-used
gures that claim that 70% of a development’s budget is spent on
oftware maintenance (Glass, 2002). Where this is a model-based
evelopment process, we assume a considerable amount of effort
hat is spent on changing and updating models. Without concrete
nformation, it is problematic to understand how much effort is
eally saved for a project, despite best approximations.

.4. Semantic correctness of relations

The approach maintains existing traceability relations whether
hey are semantically correct or not. It is not possible to find out
bout the correctness of relations or even to improve their qual-
ty via the approach. This means that it requires a reasonable
et of initial traceability relations to make the approach use-
ul. For projects where this initial quality cannot be guaranteed,
he manual maintenance of traceability relations might be the
etter choice, allowing the developer to correct problems when
ecognized.

.5. Uncertainty in the recognition process

There are several points of uncertainty in the process for rec-
gnizing development activities that might lead to incorrect or

issing traceability updates. Missing rules and missing alternatives
ithin rules can lead to unrecognized development activities and
issing updates, while insufficiently defined rules can lead to the

ecognition of development activities that have not been performed
 and Software 85 (2012) 2205– 2227 2225

and so to incorrect traceability updates. The validation function-
ality within the rule editor supports the identification of certain
problems within a rule definition, but a proportion of ensuring the
correctness and completeness of the rule catalog remains manual
work.

7.6. Future work

One goal during the development of the approach was to
reduce the manual effort involved in the maintenance of trace-
ability relations as much as possible. There are two areas that
still require manual work: selecting impacted traceability relations
during a semi-automated update; and customizing and extend-
ing the rules. Regarding the selection of impacted traceability
relations during a semi-automated update, the visualization and
animation of the impacted element, along with all related ele-
ments before and after the update could support the user in her/his
decision. Regarding the definition of rules, the existing rule edi-
tor could be extended by functionality that allows new rules to be
defined semi-automatically by observing a developer performing
change activities in situ while using a rule recorder. Furthermore,
a more intuitive, preferably visual, representation of rules would
be desirable in order to facilitate an easier rule definition and
customization by users. Finally, the extension and improvement
of the rule catalog is a continuous effort that requires ongoing
attention as more results from industrial usage become avail-
able. For example, whether there should be a default update for
each deletion or addition to a composition or inheritance struc-
ture remains an open issue and we plan to work on it in the
future.

While the support of structural UML diagrams addresses a com-
mon scenario in industry (Mäder et al., 2009c), it would be desirable
to extend the approach to other kinds of development model. The
necessary preconditions would be models described in a semi-
formal language with a defined meta-model and sufficient element
properties to allow for the identification of meaningful develop-
ment activities. For example, the following types of diagram would
meet these preconditions to a certain extent: behavioral UML dia-
grams, feature diagrams, Mathworks SimulinkTM diagrams and NI
LabViewTM diagrams.

The information that is gained about performed development
activities by the user is currently only used to enable the mainte-
nance of traceability, but this information could also support other
activities within the development process. It could, for example,
be used to generate change logs for version control systems and
could also support the checking of correctness of the performed
development activities.

The propagation of changes was another goal of the approach
and has been incorporated into the recognition and update pro-
cess. Nevertheless, it was not the main focus of this work and a
more sophisticated and selective procedure based on the available
information about the change and its type, following the work of
Cleland-Huang et al. (2003), could be possible.

The requirements traceability problem (Gotel and Finkelstein,
1994) has many facets and it is unlikely that there will ever be a
single approach that solves the whole problem, but much work has
been done on this topic over the past decade that provides promis-
ing approaches to partial aspects. A major goal for the traceability
community should clearly be the integration of these techniques
in order to provide a solution for the whole traceability life cycle
of a project. Two examples illustrate the advantages an integra-
tion of existing approaches with the one discussed in this paper

could offer. First, the integration with approaches that support
the initial creation of traceability relations would allow exist-
ing projects to retain their investment in traceability by ongoing
(semi-) automated maintenance of the generated relations. Second,

2 stems

b
t
a
c
i
m

s
m
t
i
t
n

A

i
p
w
a
t
T
A

R

A

A

A

A

A

C

C

C

D

D

D

E

E

F

F

G

226 P. Mäder, O. Gotel / The Journal of Sy

y integrating keyword matching techniques it would be possible
o provide more support for the developer in creating new trace-
bility relations as a project evolves. A dialog could provide possible
ounterparts for new traceability relations of an element, accord-
ng to the traceability information model, ranked using keyword

atching techniques.
Another more technical issue of integration relates to the tooling

cenario within larger projects. Different artifacts of the develop-
ent process are often held in different tools and the support for

raceability between these tools varies (Mäder et al., 2009c). This
ntegration seems to be a precondition for the extended use of
raceability in larger industrial projects and thus for its mainte-
ance.

cknowledgements

The authors thank Tobias Kuschke and Christian Kittler for
mplementing the prototype, Johannes Langguth for his work in
reparing and analyzing the experiment, and all the students who
ere involved in the experiment. Furthermore, the authors would

lso like to thank the anonymous reviewers of an earlier version of
his paper for their useful suggestions for improving the final paper.
his research was part funded by DFG grant Ph49/7-1 and by the
ustrian Science Fund (FWF): M1268-N23.

eferences

izenbud-Reshef, N., Nolan, B.T.,Rubin, J., Shaham-Gafni, Y., 2006. Model traceabil-
ity. IBM Systems Journal 45 (3), 515–526, ISSN 0018-8670, http://dx.doi.org/
10.1147/sj.453.0515.

lexander, I., 2002. Toward automatic traceability in industrial practice. In: Pro-
ceedings of 1st International Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE02), Edinburgh, UK, pp. 26-31, http://www.soi.
city.ac.uk/zisman/WSTPapers/Alexander.pdf.

ntoniol, G., Canfora, G., Casazza, G., Lucia, A.D., Merlo, E., 2002. Recovering trace-
ability links between code and documentation. IEEE Transactions on Software
Engineering 28 (10), 970–983, ISSN 0098-5589, http://www.computer.org:80/
tse/ts2002/e0970abs.htm.

rkley, P., Riddle, S., 2005. Overcoming the traceability benefit problem. In: Proceed-
ings 13th International Requirements Engineering Conference, IEEE Computer
Society, pp. 385–389, ISBN 0-7695-2425-7.

rlow. J., Neustadt, I., 2005. UML 2 and the Unified Process: Practical Object-Oriented
Analysis and Design, second edn. Addison-Wesley, ISBN 0-321-32127-8.

leland-Huang, J., Chang, C.K., Ge, Y., 2002. Supporting event based traceabil-
ity through high-level recognition of change events. In: Annual International
Computer Software and Applications Conference (COMPSAC02), IEEE Computer
Society, pp. 595–602, ISBN 0-769-51727-7, http://doi.ieeecomputersociety.org/
10.1109/CMPSAC.2002.1045069.

leland-Huang, J., Chang, C.K., Christensen, M.J., 2003. Event-based trace-
ability for managing evolutionary change. IEEE Transactions on Software
Engineering 29 (9), 796–810, ISSN 0098-5589, http://csdl.computer.org/
comp/trans/ts/2003/09/e0796abs.htm.

oleman, D., 1994. Object-Oriented Development: The Fusion Method. Prentice-
Hall, ISBN 0-131-01040-9.

ömges, R., Pohl, K., 1998. Adapting tracability environments to project-specific
needs. Communications of the ACM 41 (12), 54–62, 0001-0782.

ommasch, C., Duhme, D., 2004. Versandhandel: Hausarbeit in Objektorien-
tierte Analyse und Design. Tech. Rep., http://www.christian-dommasch.de/
downloads/versand/versand-dokumentation.pdf.

u, D., Gu, J., Pardalos, P.M. (Eds.), 1997. Satisfiability Problem: Theory and Appli-
cations, vol. 35 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, ISBN 0-821-80479-0.

gyed, A., Grünbacher, P., Heindl, M., Biffl, S., 2007. Value-based requirements
traceability: lessons learned. In: Proceedings 15th International Requirements
Engineering Conference (RE07), pp. 115–118, ISSN 1090-705X.

ngels, G., Heckel, R., Küster, J.M., Groenewegen, L., 2002. Consistency-preserving
model evolution through transformations. In: Proceedings 5th International
Conference UML 2002 – The Unified Modeling Language. Model Engineering,
Languages, Concepts, and Tools, vol. 2460 of Lecture Notes in Computer Science.
Springer, Dresden, Germany, ISBN 3-540-44254-5, pp. 212-226.

inkelstein, A.C.W., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh, B., 1994. Inconsis-
tency handling in multiperspective specifications. IEEE Transactions on Software

Engineering 20 (8), 569–578, ISSN 0098-5589.

owler, M., 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, ISBN 0-201-48567-2.

lass, R.L., 2002. Facts and Fallacies of Software Engineering. Addison-Wesley,
Boston, MA.
 and Software 85 (2012) 2205– 2227

Gotel, O.C.Z., Finkelstein, A.C.W., 1994. An analysis of the requirements traceability
problem. In: Proceedings of the First International Conference on Requirements
Engineering (ICRE94), IEEE Computer Society, Colorado Springs, CO, pp. 94-101,
ISBN 0-8186-5480-5.

Hayes, J.H., Dekhtyar, A., Osborne, J., 2003. Improving requirements tracing via
information retrieval. In: Procerdings of 11th IEEE International Requierments
Engineering Conference (RE03), IEEE Computer Society, pp. 138-148, ISBN 0-
7695-1980-6, doi:10.1109/ICRE.2003.1232745.

Hnatkowska, B., Huzar, Z., Kuzniarz, L., Tuzinkiewicz, L., 2003. Refinement rela-
tionship between collaborations. In: Proceedings Workshop on Consistency
Problems in UML-based Software Development, UML’03, IEEE Computer Society,
San Francisco, USA, pp. 51–57.

Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.-L., 2004. Consistency problems in
UML-based software development. In: Nunes, N.J., Selic, B., da Silva, A.R., Álvarez,
J.A.T. (Eds.), UML Satellite Activities, vol. 3297 of Lecture Notes in Computer
Science. Springer, pp. 1–12, ISBN 3-540-25081-6.

Jacobson, I., Rumbaugh, J., Booch, G., 1999. The Unified Software Development
Process, Object Technology Series. Addison-Wesley, Reading, MA, ISBN 0-201-
57169-2.

Kruchten, P., 2000. Rational Unified Process: An Introduction. Addison-Wesley,
Reading, MA, ISBN 0-201-70710-1.

Lano, K., 2005. Advanced Systems Design With Java, UML and MDA. Elsevier
Butterworth-Heinemann, Amsterdam, The Netherlands, ISBN 0-750-66496-7.

Lucia, A.D., Oliveto, R., Tortora, G., 2008. IR-based traceability recovery processes:
an empirical comparison of one-shot and incremental processes. In: 23rd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2008), 15–19 September 2008, L’Aquila, Italy, IEEE Computer Society, pp. 39-48,
ISBN 978-1-4244-2776-5, doi:10.1109/ASE.2008.14.

Luckham, D., 2002. The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Professional, Reading,
MA, ISBN 0-201-72789-7.

Mäder, P., Gotel, O., Philippow, I., 2008a. Rule-based maintenance of post-
requirements traceability relations. In: Proceedings of 16th International
Requirements Engineering Conference (RE’08), Barcelona, Spain, pp. 23–32, ISSN
1090-705X.

Mäder, P., Gotel, O., Philippow, I., 2008b. Enabling automated traceability
maintenance by recognizing development activities applied to models. In: Pro-
ceedings of 23rd International Conference on Automated Software Engineering
(ASE2008), L’Aquila, Italy.

Mäder, P., Gotel, O., Kuschke, T.I., 2008c. Philippow traceMaintainer – automated
traceability maintenance. In: Proceedings of 16th International Requirements
Engineering Conference (RE’08), Barcelona, Spain, pp. 329–330.

Mäder, P., Gotel, O., Philippow, I., 2009a. Enabling automated traceability main-
tenance through the upkeep of traceability relations. In: Proceedings 5th
European Conference on Model-Driven Architecture Foundations and Applica-
tions (ECMDA2009), Enschede, Netherlands.

Mäder, P., Gotel, O., Philippow, I., 2009b. Semi-automated traceability maintenance:
an architectural overview of traceMAINTAINER. In: Proceedings 5th ECMDA
Traceability Workshop (ECMDA-TW 2009). In conjunction with the 5th Euro-
pean Conference on Model-Driven Architecture Foundations and Applications
(ECMDA2009), Enschede, Netherlands.

Mäder, P., Gotel, O., Philippow, I., 2009c. Motivation matters in the traceability
trenches. In: Proceedings of 17th International Requirements Engineering Con-
ference (RE’09), Atlanta, Georgia, USA.

Mäder, P., Gotel, O., Philippow, I., 2009d. Getting back to basics: promoting the
use of a traceability information model in practice. In: Proc. 5th Int’l Work-
shop on Traceability in Emerging Forms of Software Engineering (TEFSE2009),
Vancouver, Canada.

Mäder, P., 2009. Rule-based maintenance of post-requirements traceability. Ph.D.
thesis, Technische Universität Ilmenau.

Maletic, J.I., Collard, M.L., Simoes, B., 2005. An XML based approach to support
the evolution of model-to-model traceability links. In: Proceedings of 3rd
International Workshop on Traceability in Emerging Forms of Software Engi-
neering TEFSE’05, ACM, New York, NY, USA, pp. 67–72, ISBN 1-59593-243-7,
http://doi.acm.org/10.1145/1107656.1107671.

Marcus, A., Maletic, J.I., 2003. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In: Proceedings of the 25th
International Conference on Software Engineering (ICSE03), IEEE Com-
puter Society, Piscataway, NJ, pp. 125-137, http://computer.org/proceedings/
icse/1877/18770125abs.htm.

Mens, T., van der Straeten, R., Simmonds, J., 2005. A framework for managing consis-
tency of evolving UML models. In: Yang, H. (Ed.), Software Evolution with UML
and XML. IGI Publishing, Hershey, PA, USA, pp. 1–30, ISBN 1-591-40462-2.

Murta, L.G.P., van der Hoek, A., Werner, C.M.L., 2006. ArchTrace: policy-based sup-
port for managing evolving architecture-to-implementation traceability links.
In: 21st IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’06, pp. 135–144, doi:10.1109/ASE.2006.16.

Murta, L.G.P., van der Hoek, A., Werner, C.M.L., 2008. Continuous and
automated evolution of architecture-to-implementation traceability links.
Automated Software Engineering Journal 15 (1), 75–107, ISSN 0928-8910,
http://dx.doi.org/10.1007/s10515-007-0020-6.
OMG, 2003. MDA Guide Version 1.0.1. Object Management Group (OMG), Framing-
ham, MA, http://www.omg.org/mda,omg/2003-06-01.

OMG, 2008. OMG System Modeling Language (OMG SysML) Version 1.1. Object
Management Group OMG, Framingham, MA, http://www.omg.org/spec/SysML/
1.1,formal/2008-11-01.

http://dx.doi.org/10.1147/sj.453.0515
http://dx.doi.org/10.1147/sj.453.0515
http://www.soi.city.ac.uk/zisman/WSTPapers/Alexander.pdf
http://www.soi.city.ac.uk/zisman/WSTPapers/Alexander.pdf
http://www.computer.org:80/tse/ts2002/e0970abs.htm
http://www.computer.org:80/tse/ts2002/e0970abs.htm
http://doi.ieeecomputersociety.org/10.1109/CMPSAC.2002.1045069
http://doi.ieeecomputersociety.org/10.1109/CMPSAC.2002.1045069
http://csdl.computer.org/comp/trans/ts/2003/09/e0796abs.htm
http://csdl.computer.org/comp/trans/ts/2003/09/e0796abs.htm
http://www.christian-dommasch.de/downloads/versand/versand-dokumentation.pdf
http://www.christian-dommasch.de/downloads/versand/versand-dokumentation.pdf
http://dx.doi.org/10.1109/ICRE.2003.1232745
http://dx.doi.org/10.1109/ASE.2008.14
http://doi.acm.org/10.1145/1107656.1107671
http://computer.org/proceedings/icse/1877/18770125abs.htm
http://computer.org/proceedings/icse/1877/18770125abs.htm
http://dx.doi.org/10.1109/ASE.2006.16
http://dx.doi.org/10.1007/s10515-007-0020-6
http://www.omg.org/mda,omg/2003-06-01
http://www.omg.org/spec/SysML/1.1,formal/2008-11-01
http://www.omg.org/spec/SysML/1.1,formal/2008-11-01

stems

O

P

R

R

R

S

S

S

v

W

P. Mäder, O. Gotel / The Journal of Sy

MG, 2010. OMG Unified Modeling Language Specification (OMG UML)
Version 2.3. Object Management Group (OMG), Framingham, MA,
http://www.omg.org/spec/UML/2.3/.

inheiro, F.A.C., 2004. Requirements traceability. In: Leite, J.C.S.P., Doorn, J. (Eds.),
Perspectives on Software Requirements. Kluwer Academic Publishers, The
Netherlands, pp. 91–113, ISBN 1-402-07625-8.

itze, M., 2008. Comparison of the Traceability Functionality of CASE-Tools. Tech.
Rep., Technical University of Ilmenau, Ilmenau, Germany.

oyce, W.W., 1987. Managing the development of large software systems: concepts
and techniques. Reprinted in: Proceedings of the 9th international conference
on Software Engineering ICSE ’87. IEEE Computer Society Press, Los Alamitos,
CA, USA, pp. 328–338, ISBN 0-89791-216-0.

ussek, L., 2004. OpenQuasar development of open source components with the aid
of quasar. In: Dadam, P., Reichert, M. (Eds.), INFORMATIK 2004 – GI Jahrestagung,
vol. 2. GI, pp. 488–492, ISBN 3-885-79380-6.

hen, W., Lu, Y., Low, W.L., 2003. Extending the UML metamodel to support software
refinement. In: Proceedings of the Workshop on Consistency Problems in UML-
Based Software Development. In conjunction with UML2002, IEEE Computer
Society, San Francisco, USA, pp. 35–42.

iedersleben, J., 2004. Moderne Software-Architektur. Dpunkt-Verlag, ISBN 3-898-
64292-5.

panoudakis, G., Zisman, A., Pérez-Mi nana, E., Krause, P., 2004. Rule-based
generation of requirements traceability relations. Journal of Systems and
Software 72 (2), 105–127, ISSN 0164-1212, http://dx.doi.org/10.1016/S0164-
1212(03)00242-5.
an Bemmel, J., Dockhorn, P., Widya, I., 2004. Paradigm: Event-driven Comput-
ing, White paper TI/RS/2004/051. Lucent Technologies, CTIT, https://doc.telin.nl/
dscgi/ds.py/Get/File-48190.

eilkiens, T., 2006. Systems Engineering mit SysML/UML. Dpunkt-Verlag, ISBN 3-
898-64409-X.
 and Software 85 (2012) 2205– 2227 2227

Dr. Patrick Mäder received a Diploma degree in industrial
engineering and a Ph.D. degree (Distinction) in computer
science from the Ilmenau University of Technology in
2003 and 2009, respectively. He worked as a consul-
tant for the EXTESSY AG, Wolfsburg between 2003 and
2005. Currently, he is a postdoctoral fellow at the Insti-
tute for Systems Engineering and Automation (SEA) of
the Johannes Kepler University, Linz. Dr. Mäder also has
an active collaboration with the Software and Require-
ments Engineering Center at DePaul University, Chicago.
His research interests include topics related to software
engineering, with a focus on requirements traceability,
and object-oriented analysis and design.

Dr. Orlena (Olly) Gotel has been active in the area of trace-
ability for over 20 years and received a Ph.D. on the topic
from Imperial College, University of London, in 1995. Dr.
Gotel has published widely on different aspects of the
traceability problem and is currently an Officer of the
Center of Excellence for Software Traceability, where she
is coordinating the Grand Challenges of Traceability and
working on its Body of Knowledge. In addition to aca-
demic research and teaching positions in the UK (Oxford
University, City University, University College London)
and the US (Pace University), Dr. Gotel has held senior

positions within the UK defense industry working on Sys-
tems Requirements Engineering. Dr. Gotel received a B.Sc.

(Hons) in Computer Science from the University of Warwick in 1989 and a M.Sc. (Dis-
tinction) in Advanced Methods in Computer Science from the University of London
in 1990.

http://www.omg.org/spec/UML/2.3/
http://dx.doi.org/10.1016/S0164-1212(03)00242-5
https://doc.telin.nl/dscgi/ds.py/Get/File-48190
https://doc.telin.nl/dscgi/ds.py/Get/File-48190

	Towards automated traceability maintenance
	1 Introduction
	2 Traceability maintenance
	2.1 Why traceability maintenance is necessary
	2.2 Related work
	2.2.1 Subscription-based approaches
	2.2.2 Rule-based approaches
	2.2.3 Approaches based on recognizing evolution

	3 Overview of the approach
	3.1 Scope and phases
	3.1.1 Development activity recognition
	3.1.2 Traceability relation maintenance

	3.2 Assumptions
	3.3 Challenges and concepts
	3.4 Technical overview

	4 Development activity recognition
	4.1 Change events
	4.2 Development activities
	4.2.1 Identifying development activities
	4.2.2 Sequences of elementary changes

	4.3 Abstract development activities
	4.3.1 Masks
	4.3.2 Property references
	4.3.3 The EventCache
	4.3.4 Alternatives

	4.4 Rules
	4.4.1 Rule definition
	4.4.2 ‘Good’ rules
	4.4.3 Rule application

	4.5 Critique of Phase 1
	4.5.1 Expression power of rules
	4.5.2 Completeness of the rule catalog
	4.5.3 Quality of the rule catalog

	5 Traceability relation maintenance
	5.1 Development activity types
	5.2 Update specification and execution
	5.2.1 Specifying the update
	5.2.2 Executing the update
	5.2.3 Project-specific traceability maintenance

	5.3 Critique of Phase 2

	6 Evaluation
	6.1 traceMAINTAINER prototype system
	6.2 Industrial validation
	6.3 Experimental set-up
	6.3.1 Research question 1: manual effort
	6.3.2 Research question 2: maintenance quality
	6.3.3 Development project
	6.3.4 Modeling tasks
	6.3.5 Subjects
	6.3.6 Data gathering

	6.4 Results
	6.5 Discussion
	6.5.1 Research question 1: manual effort
	6.5.2 Research question 2: maintenance quality
	6.5.3 Dependence on the subjects’ experience

	6.6 Threats to validity
	6.6.1 External validity
	6.6.2 Internal validity
	6.6.3 Construct validity
	6.6.4 Reliability

	7 Critical review and future work
	7.1 Assumptions of the approach
	7.2 Predefined rule catalog
	7.3 Scope of and threats to empirical studies
	7.4 Semantic correctness of relations
	7.5 Uncertainty in the recognition process
	7.6 Future work

	Acknowledgements
	References

