
Assessing the Effect of Requirements Traceability for Software Maintenance

Patrick Mäder and Alexander Egyed
Institute for Systems Engineering and Automation (SEA)

Johannes Kepler University, Linz, Austria
patrick.maeder|alexander.egyed@jku.at

Abstract—Advocates of requirements traceability regularly
cite advantages like easier program comprehension and sup-
port for software maintenance (i.e., software change). How-
ever, despite its growing popularity, there exists no published
evaluation about the usefulness of requirements traceability.
It is important, if not crucial, to investigate whether the use
of requirements traceability can significantly support develop-
ment tasks to eventually justify its costs. We thus conducted
a controlled experiment with 52 subjects performing real
maintenance tasks on two third-party development projects:
half of the tasks with and the other half without traceability.
Our findings show that subjects with traceability performed
on average 21% faster on a task and created on average 60%
more correct solutions – suggesting that traceability not only
saves downstream cost but can profoundly improve software
maintenance quality. Furthermore, we aimed for an initial cost-
benefit estimation and set the measured time reductions by
using traceability in relation to the initial costs for setting-up
traceability in the evaluated systems.

Keywords-requirements traceability; software maintenance;
traceability effect; empirical software engineering; experiment;

I. INTRODUCTION

Requirements-to-code traceability reflects the knowledge
where requirements are implemented in the code and its cap-
ture and maintenance is the focus of extensive research. De-
spite its growing popularity [1] surprisingly little is known
about its benefits. Intuitively, requirements-to-code traces
should be useful for many areas of software engineering.
Authors refer to better program comprehension and support
for software maintenance (e.g., [2], [3]). In the safety critical
domain, traceability supports the certification process and
is thus mandated by several standards (e.g., DO-178B and
EIA 12207). Nonetheless, there exists no empirical work in
which the effect of requirements traceability was proofed
and measured.

The first goal of this work was to investigate whether
knowledge of requirements-to-code traces improves the per-
formance of subjects during software maintenance tasks.
Software maintenance is an important part of the develop-
ment process, where developers are no longer as familiar
with the code as during the initial development, and traces
are perceived to be useful. To study that effect, we carried
out a study involving 52 students with a wide range of
experiences. The subjects were asked to solve maintenance

tasks taken from two software development efforts: the open
source Gantt Project (47 KLOC) and the iTurst system
(15 KLOC). Eight tasks were selected, covering real bug
fixes and feature extensions taken from their documented
archives (Gantt: issue tracker, iTrust: wiki with requirements
specification). Tasks were randomly assigned to subjects,
half the tasks with and the other half without traceability.
We measured the performance of subjects as the time they
spent to solve a task and the correctness of their solution.
Having selected real maintenance tasks provided us with a
golden standard as to how their original developers solved
the given tasks. This allowed us to assess the correctness of
the solutions the subjects provided for the tasks.

The second goal of this work was to characterize perfor-
mance differences due to traceability in relation to a range of
other criteria. We assessed how the performance varies based
on the kind of tasks subjects solved, the different domains
that projects came from, and the order in which a task was
performed by a subject. All subjects had in common that
they were not familiar with the applied projects – a situation
that commonly occurs during software maintenance and a
situation under which developers are expected to benefit
from requirements traceability.

In total, subjects were solving 315 tasks (i.e., 6 tasks
per subject on average). Our findings show that subjects
working on tasks with traceability performed better than
subjects working without traceability. In particular, subjects
with traceability performed on average 21% faster on tasks
and created on average 60% more correct solutions. This
demonstrates that traceability is not just a means for saving
some effort but can profoundly improve the quality of the
software maintenance process with likely many subsequent
benefits such as more effective maintenance, faster time to
market, and less code degradation. We also found that some
tasks benefited more from traceability than others, especially
regarding correctness of the solution. Furthermore, we found
that though project domain does significantly affect the
performance of subjects, it did not impact the effect of
traceability. The former is particularly surprising because
the two systems differed in their characteristics.

The implications of this study are numerous. Traceability
strongly benefits software maintenance. While the capture
and maintenance of traceability (studied in other works [4])
does require significant effort and while developers tend to

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

perceive this activity to be tedious and ineffective [5], this
work nonetheless demonstrates a clear, measurable perfor-
mance improvement to justify this cost. Since this work
clearly characterizes the effect of traceability, practitioners
and researchers alike may use this information to better
understand the cost/benefit trade-off of traceability – a point
that will be the focus of our future work.

The remainder of this paper is structured as follows, Sec-
tion II discusses related studies in the area of requirements
traceability and software engineering. Section III introduces
our experimental set-up, while Section IV reports about the
results and findings of the experiment. In Section V we
discuss the limitations of that study and in Section VI we
roughly estimate how measured benefits relate to the cost
of requirements traceability. Finally, Section VII concludes
and discusses possible areas of future investigations.

II. RELATED WORK

Gotel and Finkelstein report the findings of a year-long
empirical study into traceability conducted in 1992 [6]. The
study involved around one hundred software development
practitioners, holding a variety of positions within a large
organization, with experience of up to 30 years. In addition
to a comprehensive questionnaire, five focus group sessions
were conducted with thirty-seven practitioners to consolidate
data, and independent observation of practical requirements
gathering and development workshops took place. The au-
thors found multiple perspectives on what traceability was
expected to enable and on the problems experienced, and
conflicts particularly evident between those parties respon-
sible for establishing traceability and those parties using
it. The authors were concerned with understanding and
exposing the scope of the problem area; they did not report
about the actual benefits of traceability to their subjects.

Ramesh and Jarke report on a large practitioner study of
traceability where the data collection took over three years
during the 1990’s [7]. The authors conducted a pilot study
with fifty-eight masters in information technology students
to create an initial traceability meta-model and inform the
design of the study. The main study consisted of thirty focus
group discussions, each with about five people from twenty-
six companies. Their primary focus was on the types of
traceability link used in current and ideal practice. The study
comprised two phases: the first revolved around agreeing a
traceability meta-model and the second on defining reference
models for other practitioners to use. Again, the actual
benefits of traceability to their subjects were not exposed.

Arkley and Riddle report on a survey of nine software
projects, small to multinational in scope, undertaken using
questionnaires and interviews [5]. The authors identified
three issues related to traceability: the necessity for extra
entry data when using traceability tools; a lack of under-
standing on how to employ traceability; and the lack of
perceived direct benefits to the main development process.

Ahmad and Ghazali interviewed fifteen practitioners and
analyzed project documentation of three IT companies [8].
Their subjects had six to ten years of practical experience
in developing small projects. Their finding was that subjects
perceived pre-requirements traceability to be more beneficial
than post-requirements traceability. The authors did not
study the benefits of traceability to their subjects in detail.

Additionally, there is a variety of authors evaluating the
effect of different traceability techniques, e.g., [9]–[11], but
none of them is evaluating the effect of traceability itself.
Traces are rarely perfect but to full potential of traceability,
we presume correctness and completeness (see Section V).

Based on the overview of empirical studies in the area,
we identify a lack of work assessing the effect of trace-
ability for development tasks. Following the argumentation
in the introduction, maintenance is a major cost driver in
the development of a system [12] and traceability could
reduce that costs. Accordingly, we decided to restrict our
focus to software maintenance. We found several studies
focusing on software maintenance, e.g., Dzidek et al. [13]
study the costs and benefits of UML documentation for
software maintenance and Curtis et al. [14] compare the
performance of subjects solving maintenance tasks with
complexity measures (e.g., Halstead and McCabe metrics)
evaluating the same tasks.

III. METHOD

A controlled experiment was conducted in which par-
ticipants had to perform several maintenance tasks with
and without traceability. The research investigated the effort
and quality differences of participants and assessed whether
traceability significantly impacted it.

A. Participants

The participants comprised 52 students of computer sci-
ence, studying at the JKU Linz. We required all subjects
to have at least basic experience of software development
in general and development with JAVA in particular. The
participants had an average experience of 5.3 years in
software development and an average experience of 3.4 years
in development with JAVA. On average, each student had
developed software in industrial environments for 1 year,
though some had no industrial experience at all and others up
to 6 years. None of the participants had previous knowledge
of the application’s source code used for the experiment.
Only four of the participants had previously used traceability.

B. Independent Variables

Our main interest was to assess whether traceability can
have a significant impact on the performance of a software
maintainer if exposed to an unknown software system. In
order to ensure generalizable results, we decided to use two
different software projects with different characteristics and
to request participants to perform four different tasks per

project (removing bugs and implementing change requests).
Because we expected subjects to learn about a project with
every task (carryover or learning effect), we considered the
order in which a task appeared. All these distinctions were
considered as independent variables in our experiment and
subsequent statistical evaluation. The following paragraphs
discuss each variable in depth.

Project (P): We selected tasks from two software sys-
tems: Gantt and iTrust in order to ensure generalizability of
results. GanttProject is an open-source, cross-platform tool
for project scheduling, implemented with JAVA. The tool
generates Gantt charts that breakdown the work structure
of a project into tasks, dependencies among tasks, and
milestones [15]. All the functionality of the tool deals with
these charts. We selected GanttProject for our experiment,
because it represents a class of development project where
documentation is kept to a minimum and traceability is less
likely to be created and used. One of the key developers of
the GanttProject provided the necessary requirements traces.
Their issue tracking system and source code repository keeps
track of changes and allows for a detailed determination of
bug reports and resulting code changes.

Table I
DESCRIPTIVE STATISTICS AND METRICS OF THE SOFTWARE PROJECTS

Metric Gantt iTrust
Total lines of code (TLOC) 47k 15.5k
Number of classes (NOC) 626 232
Number of methods (NOM) 4570 1612
Avg. depth of inheritance tree (DIT) 2.097 1.272
Max. depth of inheritance tree (DIT) 8 4
Cyclomatic complexity (VG) 1.697 1.553

iTrust is a web-based medical application that provides
patients and other medical stakeholders with a means to keep
up with their medical records as well as to communicate be-
tween each other. iTrust is implemented in JAVA (java server
pages for user interface) and is being developed by Laurie
Williams and her students for several years [16]. Though
not an industrial project, iTrust is a complete application
developed and improved in eleven major versions. iTrust
has been developed according to a regulatory code and is
the type of system that usually employs traceability. iTrust
is a well structured and documented system, in accordance
to design notes and HIPPA regulations.

Table I shows metrics of the two projects. Both have
industrial size, though Gantt is roughly three times larger
than iTrust. The iTrust code is well structured and the ex-
tensive use case descriptions are likely to ensure a consistent
problem understanding through subjects. In contrast, metrics
show that the Gantt code is harder to maintain (Table I)
and the short and less precise bug reports may be easier to
understand for some subjects than for others.

Table II
OVERVIEW OF TASKS FOR BOTH PROJECTS AND THE NUMBER OF

PROVIDED TRACEABILITY LINKS FOR EACH

Task Issue or change request Traces

Gantt

A
[Issue id: 1755404]: New, unsaved chart dis-
carded after canceling Save (select folder,
filename) dialogue box

5

B
[Issue ids: 1018957, 1115471]: Finish-Finish
relations are saved as Finish-Start relations

2

C
[Issue id: 1364493]: Save works as Save As
for new project: file chooser dialogue appears
again, though the project has been properly
saved before

5

D
[Issue id: 2006796]: Only project files with
lowercase *.gan filename extensions are ac-
cepted under Windows

8

iTrust

A

[View emergency electronic health record
(UC21), ver 14.1, change: Oct. 22, 2008]:
list prescription as current prescription if
OLD:{prescribed within the last 90 days} →
NEW:{end date of the prescription is within
the last 91 days}

18

B
[View records (UC9), ver 13, change: Oct.
15, 2008]: add information whether family
members suffer(ed) from heart disease

12

C

[Proactively Determine Needed Patient Care
(UC17), ver 14, change: Oct. 19, 2008]: add
Poliovirus immunization when checking for
needed immunizations

7

D
[View Access Log (UC8), ver 16, change: Sep
7–16, 2009]: add functionality to sort access
log by role of accessor

4

Task (Tk): altogether, our experiment included eight
distinct tasks: four tasks for Gantt (subsequently referred to
as tasks Gantt A to D) and four tasks for iTrust (iTrust
A to D). The tasks represent maintenance activities that
previously occurred in these projects (see Table II). For
Gantt we selected bug reports from the issue tracking
system (see Table II) and provided them unchanged to the
participants. For iTrust we compared old versions of the use
case specification with the current one and selected single
change requests (see Table II). iTrust tasks contained the
original use case description and highlighted the required
change or extension. For each task, the table also contains
the number of available traces for the treatment with trace-
ability. Participants were not required to actually implement
changes, but to identify the artifacts to be changed and to
describe required changes in a structured questionnaire. You
will find more details on tasks, acceptable solutions, the
questionnaire, and the experimenting tool in the replication
package at http://www.sea.jku.at/tools/.

Traceability (Tr): Traces were either available to a sub-
ject on a particular task (with traces) or were not available
(no traces). Traces were provided as they had been created
by the original developers, some of them tracing to a whole
source code file (all Java server pages) and the remaining
ones to methods within files (all JAVA code). iTrust tasks

consisted of full use case descriptions with parts to be
changed highlighted in the text. For tasks with traces, all
available traces for a use case were provided to the subject.
Traces were labeled with the name of the use case scenario
and the source code element they related to. Gantt tasks
consisted of a bug description to be fixed. For Gantt tasks
with traces, we provided traces relating to the feature(s)
impacted by the bug to be fixed. The Gantt developers
had created these traces between a feature list and the
source code. Gantt traces were labeled with the feature name
and the related source code element name. We thoroughly
checked all traces for correctness and completeness with
respect to our asks and found no issues. The number of
available traces per task is shown in Table II.

Task Order (O): Tasks were assigned to subjects in
different orders to avoid bias. As a variable, we thus captured
whether or not a task was presented to a subject as her/his
first or later task per project.

C. Dependent Variable
This study had one dependent variable, the performance

of subjects working on a maintenance task, which has been
operationalized by two measures: time and correctness.

The time to solve a task was measured in seconds by
the experimenting tool. We decided to measure correctness
as a factor with three levels: incorrect, partly correct, and
fully correct. All of the provided solutions were scored
by the same two graders. Since our tasks were based on
real changes, we knew about the correct solution chosen
by the original developers, but we also accepted alternative
solutions, if they lead to an acceptable result. For bugs,
we considered a solution correct if it removed the problem.
For feature extensions, a solution was considered correct if
the desired additional functionality was provided. Thus, the
performance measures of our experiment were the level of
correctness that a solution had and the number of seconds
required to provide that solution.

D. Experimental Design
In order to control for individual differences in perfor-

mance, the experiment employed a 2x2x4x4 factorial design.
Four tasks were defined for each of the two projects, each
task was presented in one of four possible orders, and each
task was presented with and without traceability.

Participants were randomly assigned to experimental con-
ditions, but in such a way that they equally experienced each
level of the independent variables project, task, and trace-
ability. That is, she/he had been assigned to all four tasks
of both projects, she/he either started with the four Gantt or
the four iTrust tasks, and per project she/he performed two
tasks with and two without provided traceability.

E. Experimenting Tool
In order to have control of what participants could do

during the experiment and to capture all their actions, we

implemented a specific editor tool. This ensured that all
subjects would be equally treated in the experiment.

The developed tool is a text editor with development
support. It provides a tree selector for browsing the project
structure and opening files, multiple files can be open in sep-
arate tabs, and the content of files is being syntax highlighted
(JAVA and JSP). Additionally, users can conveniently search
within all files of a project and restricted to a selected file.

Traceability links are provided in a separate window
above the tree selector and labeled with the names of the
artifacts they are connecting (e.g., UC1[S1] − > GetVis-
itRemindersAction.java : getVisitReminders()). A click on a
link opens the related file and highlights the linked artifact.
Traces are also highlighted in the file tree.

Furthermore, the editor controls the experiment. Once a
task is started, all required artifacts are displayed, i.e., the
task description (bug report or use case description with
change request), the project file tree and if available related
requirements traces. The tool captures the time a user spends
on a task, whether a task has been completed and tracks all
the actions that the user takes to solve a task. All subjects
were working with that tool for all their tasks.

F. Procedure and Material

Material: A packet of material was prepared for each
participant, explaining the goal of the experiment, the nature
of tasks, and how to capture results within the provided
questionnaire. The material further gave a short introduc-
tion into the experimenting tool (used by all subjects re-
gards of experiment setup) and the selected projects. For
GanttProject, the material briefly described the tool and its
functionality (all taken from [15]), including two screenshots
of the tool. For iTrust, the material also described the
functionality of the tool, provided a glossary of abbreviations
used within use case scenarios, showed brief design notes
and four screenshots with different views of the application
(all taken from [16]). In all, the documentation for the iTrust
system was more elaborate than the documentation for the
GanttProject system. All material was provided in English.

Introduction: We spent 20 min going step by step
through the material. The introduction further comprised
instruction in the use of the experimenting tool and two
practice exercises with the experimenting tool distinct from
the experimental tasks. After the exercises, each participant
had to complete the first part of the questionnaire, gathering
information about her/his development experience, prior
knowledge of the source code of our two projects and
experience in using traceability (see Subsection III-A).

Tasks: The main part of the experiment contained the
administration of up to eight experimental tasks. We allowed
up to two hours for working on these tasks. Participants were
told they had to successfully solve the tasks if possible,
i.e., correctness of the solution was their goal. However,
they were also required to quickly solve the problems. The

Table III
SUMMARY OF MULTIVARIATE AND UNIVARIATE ANALYSES OF VARIANCE (N=315)

Multivariate analysis of variance for Univariate analyses of variance for
performance (time, correctness) time correctness

Source of variation Df Wilks’ λ approx. F Pr(>F) F value Pr(>F) F value Pr(>F)
Independent variables
traceability (Tr) 1 0.84 27.49 *** 26.95 *** 34.74 ***
project (P) 1 0.97 4.50 * 5.32 * 4.80 *
task (Tk) 7 0.83 4.55 *** 6.27 *** 2.85 *
task order (O) 3 0.83 9.02 *** 18.19 *** 1.19 n.s.
Interactions
Tr x Tk 7 0.92 1.76 * 1.17 n.s. 2.36 *

Significance codes for Pr(>F): > 0 ’***’; > 0.001 ’**’; > 0.01 ’*’; > 0.025 ’n.s. (non significant result)’

experimenting tool controlled the appearance of tasks (see
Subsection III-D on assignment details). Once, a subject
decided to stop working on a task, it was not possible for
her/him to go back to that task in order to control learning
effects. Participants were permitted to work up to 30 min
on each task, otherwise the tool would stop the work. For
each task, the participants had to capture their changes in the
questionnaire that provided templates for capturing changes.

Debriefing: We required each participant to fill-in a
short debriefing and feedback section of the questionnaire.

IV. RESULTS

A multivariate analysis of variance (MANOVA) was con-
ducted to determine the effect of the independent variables
on the compound dependent variable performance. Multi-
variate normality of the captured data was tested using a
multivariate version of the Shapiro test. A Bartlett test was
performed to check homogeneity of variance within the data.
Both tests indicated a lack of evidence that the assumptions
of normality and variance homogeneity were violated. One
multivariate outlier was removed from the data set. Based
on that preparations, MANOVA was considered to be an
appropriate analysis technique for the given problem.

An initial statistical model describing a subject’s perfor-
mance, measured by time to and correctness of solution,
was fitted by inclusion of all independent variables and
all possible interactions between the independent variables.
An interaction between two factors exists if the effect of
one factor depends on the levels of the second factor. This
initial model was simplified by stepwise removal of non-
significant interaction terms. Table III presents the result of
three model analyses, the multivariate MANOVA and the
ongoing univariate ANOVAs, all computed for the simplified
model.

From top to bottom, the rows of the table show statistical
measures for the six independent variables as well as the two
remaining interactions, all have been identified as significant
sources of variation. The second column of the table shows
the degree of freedom for each variable and interaction. The

third to fifth columns summarize the results of the computed
MANOVA. We decided to apply Wilks’ λ as test statistics
for assessing whether there are statistically significant dif-
ferences between the independent variables and the linear
combination of the dependent variables, because the quantity
1 − λ gives the proportion of generalized variance in the
dependent variables explained by the model and so allows
to quantify each effect. That is, the smaller the value of λ
for an independent variable or interaction the more variation
in the linear combination of the dependent variables it
explains. The columns six, seven, eight and nine show results
of two univariate analyses of variance (ANOVA) for each
dependent variable that were conducted as follow-up tests to
the MANOVA. Using the Bonferroni method for controlling
Type I error rates for multiple comparisons, both ANOVAs
were tested at a α = 0.025 significance level. The following
subsections discuss in-depth the effect of each independent
variable and contain figures and tables that quantify effects.

A. Traceability and Project

This subsection discusses the effects of the independent
variables traceability and project on the performance of
subjects. The statistical tests show that traceability has a
highly significant effect on how a subjects overall performs
for a particular task (see row “traceability” of Table III:
Wilks′λ = 0.84, F = 27.49, ∗ ∗ ∗) as well as separately
on the time she/he needs to complete the task and the
correctness she/he achieves for that task. The project to
which a task belongs has a less strong, but still significant
effect on the result of a subject (see row “project” of
Table III: Wilks′λ = 0.97, F = 4.50, ∗).

Figure 1 compares the times that participants spend on
tasks with and without traceability as box plots for all
performed tasks (left) and separately for tasks performed
on the Gantt project (middle) and the iTrust project (right).
Similarly, Figure 2 compares the overall correctness reached
by participants and the correctness per project as bar plot.
Each bar visualizes the percentages of correct solutions (dark
grey area), partly correct solutions (light grey area), and

●

●
●

●

●

●

●

●

0

500

1000

1500

2000

T
im

e
[s

]

n=155 n=160 n=76 n=79

●

●

●
●
●

●

n=78 n=82

all Gantt iTrust

no traces
with traces

Figure 1. Time spent on performing a task across all performed tasks and
per project without and with traceability

Ta
sk

 c
or

re
ct

ne
ss

 d
is

tr
ib

ut
io

n
[%

]

0

20

40

60

80

100

all Gantt iTrust

incorrect
partly correct
correct

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

Figure 2. Correctness distribution of results across all performed tasks
and per project without and with traceability

incorrect solutions (white area) to a task in comparison to all
solutions. For the same three groups (all tasks, Gantt tasks,
iTrust tasks), Table IV presents the mean and the standard
deviation of time spent on performing a task (mean (sd)),
the difference in mean values between the treatment without
and with traces (diff), the percentage of correct solutions that
subjects created for particular tasks (Correct tasks), and the
difference in correct replies between the treatment without
traces and the treatment with traces (diff).

Table IV
PERFORMANCE OF SUBJECTS ACROSS ALL TASKS AND PER PROJECT

Time [s] Correct tasks
Project Trace mean (sd) diff [%] diff

all no 906 (411) -21% 43 60%
with 717 (360) 68

Gantt no 970 (417) -24% 36 91%
with 739 (413) 68

iTrust no 844 (398) -18% 49 38%
with 696 (303) 68

A comparison of all performed tasks shows that subjects
working with traceability spent on average 717s working
on a task, while subjects working without traceability spent
on average 906s working on a task. That means that on
average traceability allowed to complete a task 21% faster.
Comparing the correctness of performed tasks, we found
that participants working without traceability created 43%

correct solutions, while participants working with traceabil-
ity created 68% correct solutions to tasks. That means that
traceability facilitates 60% more correct solutions to a task.

After examining the effect that traceability has on the
performance of subjects, we compared time and correctness
separately for tasks performed on the Gantt and the iTrust
project. Results show that iTrust tasks have been solved
slightly faster and more correct than Gantt tasks. That
observation correlates with the projects’ metrics (see Table I)
and our subjective opinion (Gantt being the larger system
and being significantly less documented). That effect is
statistically significant, but less strong than the effect of the
other independent variables (see Table III).

We also studied the combined effect of traceability and
project. Regarding time, we found that subjects working
with traceability spent on average slightly more time for
completing a Gantt (739s) vs. an iTrust task (696s). For
subjects working without traceability the effect is similar,
though the difference in times is larger, Gantt (970s) vs.
iTrust (844s). Regarding correctness, subjects with trace-
ability created 68% correct solutions for tasks of both
projects. A difference is visible for subjects working without
traceability, which created 36% correct solutions for Gantt
tasks vs. 49% correct solutions to iTrust tasks.

In summary, the differing project characteristics of the
Gantt and the iTrust project mainly effect subjects without
traceability, while subjects with traceability perform almost
equally (time and correctness) for both projects (compare
also Figure 1 and 2). Though, this is an interesting trend,
we found no significant interaction between traceability and
project to statistically support that finding.

B. Tasks

This subsection focuses on the effects that the kind of
task has on the performance of a subject individually and
in combination with traceability. The statistical tests show
that the kind of task highly significantly effects a subjects
overall performance (see row “task” in Table III: Wilks′λ =
0.83, F = 4.55, ∗∗∗) as well as separately on the time spent
to complete the task and the achieved correctness. Figure 3
compares the times that participants spend on tasks with and
without traceability separately for the eight different tasks.
Similarly, Figure 4 compares the correctness that participants
reached with and without traceability per task. Finally,
Table V presents descriptive statistics. Especially, when
comparing the results for different tasks it is important to
recognize that time and correctness are dependent. Someone
who is solving a task correctly may require more time than
someone who fails in solving a task.

Focussing at differences in time between tasks (see Ta-
ble V), subjects working with traceability completed their
work, except for Gantt A, 14% to 53% faster than those
subjects performing the same tasks without traceability. For
the Gantt A task they performed 2% slower than those

●

0

500

1000

1500

2000

T
im

e
[s

]

n=21 n=19 n=21 n=15 n=22 n=19 n=20 n=18

●

●

●

●●

●
●

●

n=20 n=19 n=18 n=21 n=20 n=20 n=22 n=20

Gantt A Gantt B Gantt C Gantt D iTrust A iTrust B iTrust C iTrust D

no traces
with traces

Figure 3. Time for completing a task without and with traceability, depending on its type

Ta
sk

 c
or

re
ct

ne
ss

 d
is

tr
ib

ut
io

n
[%

]

0

20

40

60

80

100

Gantt A Gantt B Gantt C Gantt D iTrust A iTrust B iTrust C iTrust D

incorrect
partly correct
correct

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

Figure 4. Correctness distribution of results created without and with available traceability, depending on the kind of task

working without traceability. The specific of the bug report
used in Gantt A was that the original developers had created
a multi-level, logical construct that did not properly handle
the case of canceling a file selector dialog. Subjects might
have spent a long time on understanding the construct
in order to solve the task. Especially, if compared with
correctness showing 80% vs. 33% correct solutions created
for Gantt A by subjects working with traceability, we may
infer that subjects without traceability used less time because
most of them failed to identify the problem correctly.

Assessing correctness between the different kinds of task
shows that subjects working with traceability created, except
for Gantt C, 6% to 239% more fully correct solutions to tasks
than those subjects working without traceability. For the
Gantt C task, subjects working with traceability created 22%
less fully correct solutions, while the combined percentage
of partly and fully correct solutions 76% vs. 83% is larger
for the group working with traceability. An analysis of that
issue suggests that the five provided traces that captured the
full Save As functionality, might have been misleading for
several subjects working with traceability.

There is a wide spread in correctness differences between
tasks of the same treatment (with or without traceability) and
between treatments. Statistical tests identified the interaction
between traceability and kind of task to significantly effect
the performance of subjects (see row “Tr x Tk” in Table III:
Wilks′λ = 0.92, F = 1.76, ∗), though not strongly signifi-
cant. The univariate analysis shows that the effect restricts
to correctness and does not significantly influence the time
spent on the task. The finding is that the gain in speed

Table V
PERFORMANCE OF SUBJECTS PER TASK KIND

Time [s] Correct tasks
Task Trace mean (sd) diff [%] diff

Gantt A no 1007 (416) 2% 33 140%
with 1025 (424) 80

Gantt B no 974 (414) -21% 21 150%
with 769 (379) 53

Gantt C no 1020 (410) -22% 57 -22%
with 793 (378) 44

Gantt D no 843 (448) -53% 27 239%
with 393 (154) 90

iTrust A no 781 (384) -17% 59 35%
with 647 (280) 80

iTrust B no 840 (482) -14% 53 14%
with 722 (413) 60

iTrust C no 932 (403) -20% 60 6%
with 745 (278) 64

iTrust D no 827 (324) -20% 22 215%
with 665 (222) 70

through traceability is independent of the kind of task for our
experiment, but whether and how big a gain in correctness
through traceability is, depends on the kind of task.

C. Task Order

This subsection focuses on the effect that the order in
which a task was presented to a subject had on the perfor-
mance of that subject for the particular task. The statistical
tests show that the task order has a highly significant effect
on a subjects’ overall performance (see row “task order”

in Table III: Wilks′λ = 0.83, F = 9.02, ∗ ∗ ∗) as well as
separately and even stronger on the time spent to complete
a task, but not on the achieved correctness. That means that
the first task solved by a subject was not less correct than
the remaining ones, but considerably slower.

0

500

1000

1500

2000

T
im

e
[s

]

n=47 n=46 n=31 n=31

●●

●

●

n=49 n=42 n=35 n=34

First Second Third Fourth

no traces
with traces

Figure 5. Time for completing a task, depending on the sequential order
in which it was presented to the subject

Figure 5 compares in box plots the times that participants
spend on tasks with and without traceability, separated for
the four different orders in which a task could be solved.
We omitted a plot of correctness as it is not significantly
impacted by the task order, but Table VI presents complete
descriptive statistics aggregated by task order.

Table VI
PERFORMANCE OF SUBJECTS FOR TASKS, GROUPED ACCORDING TO

THE ORDER IN WHICH A TASK WAS PRESENTED TO THE SUBJECT

Time [s] Correct tasks
Order Trace mean (sd) diff [%] diff

First no 1134 (412) -23% 30 140%
with 877 (368) 71

Second no 808 (376) -10% 41 56%
with 730 (393) 64

Third no 786 (370) -20% 48 48%
with 631 (321) 71

Fourth no 823 (376) -32% 58 11%
with 559 (242) 65

Subjects spent considerably more time on the first task
presented to them, on average 1134s without and 877s with
traceability, compared to the second performed task, which
lasted on average 808s without and 730s with traceability.
That is the so-called carryover or learning effect we ex-
pected, but that effect is independent from the traceability
treatment as the statistical test suggests and the time dif-
ferences within the table show. Focusing on correctness of
solutions, it is interesting that tasks with traceability were
solved with almost equal quality 64% to 71% fully correct
solutions, while a task performed without traceability seems
to become more often fully correct the later it has been
performed by the user, 30% first task to 58% fourth task.
Nonetheless, the interaction between traceability and task
order is not statistically significant and so are the differences

we found. Furthermore, it is not clear what exactly the reason
for such an effect would be, a growing experience with the
project or the traceability used for previous tasks. The study
of that effect remains a future exercise.

V. THREATS TO VALIDITY

This section discusses what is considered to be the most
important threats to the validity of the experiment.

A. External Validity

Our experiment shows results of subjects with a spread of
experiences, but with overall little industrial experience (on
average 1 year) and does accordingly not allow us to draw
conclusions for more experienced developers. Regarding that
issue an additional study with more experienced subjects
is required and planned. Furthermore, both projects are
implemented in JAVA and though not expected, effects might
be different for other programming languages.

We tried to keep the other aspects of the experiment as
realistic and redundant as possible, applying two systems,
using four tasks per project and having different kinds of
tasks (bug reports vs. feature request). Systems, tasks and
traces have been used in the original state as recovered
from the system’s archives. Focusing on the tasks that we
selected, our results show that all are neither easy nor
unsolvable. Subjects created 37% to 69% correct solutions
for the eight different tasks. That observation suggests a
balanced selection of tasks. Also, the tasks varied in the
impact traceability had (in some cases, tasks with traces
where faster, in other cases they were better, in yet other
cases both). This variation also suggests a good selection of
tasks. Nonetheless, the tasks had in common that they were
understandable without a deep knowledge of the system
and our results are only generalizable for that kind of task.
Nonetheless, we believe that this would be the type of
task that professionals less familiar with a project would
be exposed to because more complex tasks are likely given
to professionals who are familiar with the system and who
are also likely not to benefit as much from traceability.

For both systems, we selected from a pool of 8 possible
tasks. These tasks were related to the tools functionality
and were understandable without knowledge of the working
tool. We also made sure that the tasks involved no tool-
specific techniques or libraries. The selection of tasks may
thus pose a threat to validity. However, the chosen tasks were
of different complexity, involving in some cases fewer and
in other more artifacts.

We provided only traces as relevant for a given task to
separate the benefit of traceability from its cost (cost=cre-
ating, maintaining, and retrieving them). This is reasonable
because the cost of traceability is affected by a range of
factors (e.g., levels of automation) and is likely to change
with further traceability research. For that same reason,
we also provided high quality traces only (correctness) to

demonstrate the best possible benefit of traceability. How-
ever, incorrect and/or incomplete traceability are a practical
problem and further studies are needed to investigate their
impact on trace benefits (e.g., possibly involving existing
trace technologies [17], [18]).

B. Internal Validity

To decrease variability in knowledge across participants
we provided an introductory tutorial. The written form of the
material minimized the possible influence of the experiments
on the results. We asked subjects after the introduction
whether they had questions before starting the experiment
and found that except for a few organizational questions they
felt ready. This suggests that the introduction was sufficient.

The time that subjects could spend on the experiment
was restricted in two ways, raising the question whether the
permitted time was sufficient or had an effect on the results.
First, subjects had to stop working on a task after 30 minutes.
This allowed time was more than twice as long as subjects
on average spent on a task. Only 9 out of 315 tasks were
stopped by the user or got terminated by the tool after 30
minutes. These observations suggest that the deadline per
task had no relevant effect on our results. Second, subjects
were permitted an overall time of two hours for performing
tasks in order to ensure their consistent concentration. Dur-
ing that time subjects performed a minimum of 4 tasks, an
average of 6.1 tasks, and 11 out of 52 subjects completed all
8 tasks. We analyzed results per task and not per subject and
had assigned tasks in random sequence to subjects, ensuring
their comparability. Furthermore, we studied the effect that
the task order had on performance and found that after
an initial learning effect between the first and the second
performed task, the order does not significantly affect the
performance of subjects.

Treatments were randomly assigned to the participants in
order to balance learning effects. None of the participants
knew the development perspective of the projects prior to the
experiment. Learning effects was considered as independent
variable and studied in depth.

We have used two different projects, with four different
tasks each and we had a number of 315 performed tasks.
Based on this diversity in the original experiment, we expect
that replications of the experiment will offer results similar
to those presented here. Concrete measured results will differ
as they are specific to the subjects, but the underlying trends
and implications should remain unchanged.

Our experiment aimed at evaluating the effect of trace-
ability on software maintenance tasks. We decided to assess
that effect by the performance of subjects implementing
maintenance tasks and to operationalize performance by time
to and correctness of solution. If a subject performs better on
a maintenance task, then the time spent on the task should
be lower and/or the solution should be more correct. Our
experiment therefore focused on these measures.

VI. COST-BENEFIT ESTIMATION

Now that we assessed the benefit that requirements trace-
ability can offer for performed maintenance tasks, the ques-
tion arises of how that benefit compares to the overall costs
of providing traceability for a development project. With this
additional information it is possible to make a decision of
whether traceability justifies its costs for a specific project
or not. There are two costs drivers in having up-to-date
traceability for a project: (1) the initial creation of traces,
and (2) the update of traces after structural changes to traced
artifacts. Unfortunately, no generic model for estimating the
full costs of requirements traceability on different projects
is available.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

no traces

GanttProject
Break-even at

56 performed tasks

Initial traceability
investment

iTrust
Break-even at
72 performed tasks

GanttProject
C

um
ul

at
ed

 T
im

e
[h

]

with traces

no traces

with traces

iTrust

Figure 6. Cumulated time of 100 average tasks with and without
traceability on GanttProject and iTrust. In terms of effort, the break-even
point is reached with 56-72 tasks. The benefit of quality is not considered.

However, we can estimate the costs for the initial cre-
ation of traceability in both projects. In previous work, we
measured and studied the creation of traceability links for
GanttProject by its original developers [4]. This information
does not only tell us how long the creation of all Gantt traces
took (3.6 hours), but it also gives an estimation of how long a
developer typically needs to trace methods in relation to their
size (measured in LoC). Based on that information and based
on additional experiments with students also tracing the
Gantt source code, we previously proposed a simple model
for estimating the costs of tracing Java methods in relation
to their size. We estimated the costs for the creation of all
iTrust traces based on that model as being 3 hours. Earlier
analyses had showed that predicted values were within 7%
of the actual costs. We compared the costs for setting-up
traceability in GanttProject and iTrust with the costs of
performing maintenance tasks with and without traceability.
Figure 6 shows the incremental required time for performing
1 to 100 maintenance tasks with and without traceability on
GanttProject and iTrust (the incremental time is an average
across all tasks). We found that for Gantt after 56 performed
tasks and for iTrust after 72 performed tasks, the initial costs
for setting-up traceability would be justified and with each
additional task the investment into traceability would pay-

off. These estimations can help decision makers that want
to know whether traceability makes sense in their specific
project. If the number of performed maintenance tasks is
likely to supersede the discovered break-even points, then a
benefit by introducing traceability is likely.

However, our estimation is imprecise in at least three
regards. First, it does not take in consideration the cost
for maintaining traces as we have no information regarding
them. Additional studies are required on that topic. Second,
we only consider the time saving of performed tasks with
traces over those performed without traces for our esti-
mation. But, subjects with traces also created considerably
better solutions (60% more correct solutions). This quality
difference will likely lead to a larger time gain in favor
of traceability as tasks have to be fully solved either in
additional tries by the same subject or by a more experienced
developer. Third, existing traces may be used to support
manifold additional development tasks with additional ben-
efits. It is a future exercise to study the effect of traceability
in support of other development activities.

VII. CONCLUSIONS

We conducted a controlled experiment with 52 subjects
performing 315 real maintenance tasks on two third-party
development projects: half of them with and the other
half without traceability. Our finding is that subjects with
traceability performed on average 21% faster on a task
and created on average 60% more correct solutions. The
effect of traceability is correlated with the kind of task.
Especially, the gain in correctness varied quite strong among
the tasks. Furthermore, our data indicates that the gain of
correctness through traceability is shrinking after the first
performed task. Subjects without traceability create more
correct solutions after the initial task, while subjects with
traceability perform very well right from the beginning.
Finally, we aimed for an initial cost-benefit estimation and
set the measured time reductions by using traceability in
relation to the initial costs for setting-up traceability in
the evaluated systems. Nonetheless, a proper cost-benefit
model for traceability needs additional studies regarding the
costs of maintaining traceability and regarding the benefit
of traceability for other tasks in the software development
process. This will be the focus of our future work. We are
also planning to replicate the reported experiment with a
group of experienced software developers in oder to study
the influence of industry experience and trace quality.

ACKNOWLEDGMENTS

We would like to thank all experiment participants and
the developers of Gantt and iTrust for making their work
publicly available. This work was funded by the Austrian
Science Fund (FWF) M1268-N23 and P23115-N23, and the
German Research Foundation (DFG) Ph49/8-1.

REFERENCES

[1] P. Mäder, O. Gotel, and I. Philippow, “Motivation Matters
in the Traceability Trenches,” in Proc. 17th Int’l RE Conf.
(RE’09), Atlanta, Georgia, USA, August 2009.

[2] M. Lindvall and K. Sandahl, “Practical implications of trace-
ability,” SPE, vol. 26, no. 10, pp. 1161–1180, 1996.

[3] K. Pohl, Process-Centered Requirements Engineering. Re-
search Studies Press, 1996, ISBN 0-86380-193-5.

[4] A. Egyed, F. Graf, and P. Grunbacher, “Effort and quality
of recovering requirements-to-code traces: Two exploratory
experiments,” in 18th IEEE Int’l RE Conf. (RE10), 2010, pp.
221–230.

[5] P. Arkley and S. Riddle, “Overcoming the traceability benefit
problem,” in 13th Int’l Req. Eng. Conf., 2005, pp. 385–389.

[6] O. Gotel and A. Finkelstein, “An analysis of the requirements
traceability problem,” in Proc. 1st Int’l Conf. Req. Eng.
ICRE94., Colorado Springs, CO, April 1994, pp. 94–101.

[7] B. Ramesh and M. Jarke, “Toward reference models of
requirements traceability,” IEEE TSE, vol. 27, no. 1, pp.
58–93, 2001.

[8] A. Ahmad and M. Ghazali, “Documenting requirements trace-
ability information for small projects,” IEEE Int’l Multitopic
Conference INMIC 2007., pp. 1–5, Dec. 2007.

[9] A. D. Lucia, R. Oliveto, and G. Tortora, “IR-based traceability
recovery processes: An empirical comparison of ”one-shot”
and incremental processes,” in ASE. IEEE, 2008, pp. 39–48.

[10] D. Cuddeback, A. Dekhtyar, and J. Hayes, “Automated re-
quirements traceability: The study of human analysts,” in 18th
IEEE Int’l RE Conf. (RE10), oct 2010, pp. 231 –240.

[11] P. Mäder and J. Cleland-Huang, “A visual traceability model-
ing language,” in Model Driven Engineering Languages and
Systems, ser. LNCS. Springer, 2010, vol. 6394, pp. 226–240.

[12] R. L. Glass, Facts and Fallacies of Software Engineering.
Boston, MA: Addison-Wesley Professional, 2002.

[13] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic em-
pirical evaluation of the costs and benefits of UML in software
maintenance,” IEEE TSE, vol. 34, no. 3, pp. 407–432, 2008.

[14] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and
T. Love, “Measuring the psychological complexity of soft-
ware maintenance tasks with the halstead and mccabe met-
rics,” IEEE TSE, vol. 5, no. 2, pp. 96–104, 1979.

[15] (GanttProject). [Online]. Available: www.ganttproject.biz

[16] (iTrust). [Online]. Available: http://agile.csc.ncsu.edu/iTrust/

[17] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Fine-
grained management of software artefacts: the ADAMS sys-
tem,” SPE, vol. 40, no. 11, pp. 1007–1034, 2010.

[18] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk, “Trace-
clipse: an eclipse plug-in for traceability link recovery and
management,” in 6th Int’l TEFSE Workshop, 2011, pp. 24–30.

