Published in Proceedings of the the 36th International Conference on Software Engineering (ICSE), Hyderabad, India

@INPROCEEDINGS{conf/licse/RempelMKC14, author = {Patrick Rempel and M{\"a}der, Patrick and Tobias Kuschke and Jane Cleland-Huang},

title = {Mind the Gap: Assessing the Conformance of Software Traceability to Relevant Guidelines}, booktitle = {Proc. of the 36th International
Conference on Software Engineering {(ICSE)}, Hyderabad, India}, year = {2014}}

Mind the Gap: Assessing the Conformance
of Software Traceability to Relevant Guidelines

Patrick Rempel*, Patrick M&der', Tobias Kuschke!, and Jane Cleland-Huang?

Technische Universitat limenau’
Software Systems/Process Informatics Group
limenau, Germany

{patrick.rempel|patrick.maeder}@tu-ilmenau.de

ABSTRACT

Many guidelines for safety-critical industries such as aero-
nautics, medical devices, and railway communications, spec-
ify that traceability must be used to demonstrate that a rig-
orous process has been followed and to provide evidence that
the system is safe for use. In practice, there is a gap between
what is prescribed by guidelines and what is implemented
in practice, making it difficult for organizations and certi-
fiers to fully evaluate the safety of the software system. In
this paper we present an approach, which parses a guideline
to extract a Traceability Model depicting software artifact
types and their prescribed traces. It then analyzes the trace-
ability data within a project to identify areas of traceability
failure. Missing traceability paths, redundant and/or incon-
sistent data, and other problems are highlighted. We used
our approach to evaluate the traceability of seven safety-
critical software systems and found that none of the evalu-
ated projects contained traceability that fully conformed to
its relevant guidelines.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Life cycle

General Terms

Documentation, Management

Keywords

Software traceability, safety, standard, guideline, compli-
ance, conformance, certification, software and system safety,
safety critical, failure patterns, assessment, inspection

1. INTRODUCTION

Developing software for regulated industries is a challeng-
ing process. Not only must the software deliver the required
features, but it must do so in a way that ensures that the
system is safe and secure for its intended use [27, 10]. To this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’ 14, May 31 - June 7, 2014, Hyderabad, India

Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

DePaul University?
Systems and Requirements Engineering Center
Chicago, IL, USA
jhuang@cs.depaul.edu

end safety-critical, and other regulated systems, must meet
stringent guidelines before they can be approved or certified
for use [50, 19, 3]. For example, software developed for the
aerospace industry must comply to the ISO12207 and/or the
DO-178B guidelines, while software developed for European
railway communication, signaling, and processing systems,
must comply to EN50128 [13, 20]. Most guidelines prescribe
a set of steps, deliverable documents, and exit criterion fo-
cused around planning, analysis and design, implementa-
tion, verification and validation, configuration management,
and quality assurance activities. In addition they often pro-
vide specific guidelines for the creation and use of trace-
ability in the project. For example, depending upon the
criticality level of a requirement, the US Federal Aviation
Authority guideline DO-178B requires traceability from re-
quirements to design, and from requirements to source code
and executable object code [50].

In practice, traceability is achieved through the creation
and use of trace links, defined by the Center of Excellence
for Software and Systems Traceability (CoEST) as “specified
associations between a pair of artifacts, one comprising the
source artifact and one comprising the target artifact” [26,
12, 11]. Software traceability serves an important role in
demonstrating that a delivered software system satisfies its
software design constraints and mitigates all identified haz-
ards. When executed correctly, traceability demonstrates
that a rigorous software development process has been es-
tablished and systematically followed.

1.1 Traceability Challenges

Organizations struggle to establish and maintain accurate
and complete sets of traceability links [5, 38, 49, 48, 39]. A
prior analysis of the traceability information submitted by
various organizations to the US Food and Drug Administra-
tion (FDA) as part of the medical device approval process,
showed a significant traceability gap between the traceability
expectations as laid out in the FDA’s “Guidance for the Con-
tent of Premarket Submissions for Software Contained in
Medical Devices” [21], and the traceability data documented
in the submissions [39]. While all of the submissions made
some attempt to satisfy the FDA’s traceability guidelines,
serious deficiencies were found in almost all the submissions
in terms of missing traceability paths, missing and redun-
dant links, and problems in trace granularity which made
it very difficult to understand the rationale for individual
links. These observations draw attention to the traceability
gap which exists between the traceability specified and re-
quired in guidelines and the actual trace links established in

patrickr
Rectangle

patrickr
Typewriter
Published in Proceedings of the the 36th International Conference on Software Engineering (ICSE), Hyderabad, India

patrickr
Typewriter
@INPROCEEDINGS{conf/icse/RempelMKC14, author = {Patrick Rempel and M{\"a}der, Patrick and Tobias Kuschke and Jane Cleland-Huang}, title = {Mind the Gap: Assessing the Conformance of Software Traceability to Relevant Guidelines}, booktitle = {Proc. of the 36th International Conference on Software Engineering {(ICSE)}, Hyderabad, India}, year = {2014}}

Technical Guideline traceability Project traceability Safety-critical
guideline model model software
P roject
_____ [15026262 ' proj
1 Y 1 -Origin
1 DO-178B '
I Input 2iein : Artifact -
1 -Inpu i ™
Do-1788 | | : e oo Traceabilty W
: Activit Artifact Traceabilit ! y ¥
Polee] BE] [| " | U
: TraceLink TracePath
-Output o
-Destination
Assessment: ¢)
Preparation: Model Guideline consistency Assessment: Preparation: Model

guideline’s traceability Compare guidelines

Project vs. guideline project’s traceability

Figure 1: Overview of the proposed assessment approach

software projects. Trace deficiencies make it difficult for the
manufacturers to ensure that the system they are building
is safe for use and for certifiers to understand whether they
should approve it for use in the public domain.

Furthermore, the emerging trend towards the adoption of
agile methods in regulated domains introduces the need for
more continual evaluation. In fact, the European Open-DO
initiative [42], actively seeks to address the Big Freeze prob-
lem in which the significant cost and effort of the certifica-
tion process makes it difficult to introduce change once the
product is certified. The initiative is developing techniques
for integrating agility into the safety-critical software de-
velopment process. Although many people do not consider
agile techniques suitable for use in safety-critical domains,
the verification-driven life-cycle based on a rigorous test-
first environment with continuous integration of changes has
been used effectively in a number of safety-critical projects
[36, 32]. The Open-DO initiative has a specific goal to de-
velop techniques and tools that will allow all software to be
constantly maintained in a ‘ready-to-certify’ state. The big-
bang approach in which trace links are created after-the-fact
for certification purposes, obviously does not support this
notion of constant certifiability. As traceability is a critical
element of the certification process, our approach provides
techniques and tools for constantly evaluating, and report-
ing on, the trace coverage of a project.

1.2 Gap Analysis

In this paper we provide formalisms, metrics, and tool
support for evaluating traceability coverage with respect to
the guidelines that are relevant for a specific project. Within
the context of this paper, we define a technical guideline as a
document describing a common position of industry and cer-
tification bodies on how to develop safety-critical software
within a certain domain. Guidelines generally help to coor-
dinate technical viewpoints of regulators and safety experts
in their licensing practices. They serve as a reference for
constructing a safety case and for demonstrating the safety
of software based systems. Furthermore, they support man-
ufacturers in developing products for international markets.
In contrast regulations are rules of order having the force of
law prescribed by a superior or competent authority. While
a regulation only lists obligations that have to be fulfilled in
order to be compliant with law, a guideline suggests mea-
sures that should be taken in order to provide evidence that
a software complies with regulations.

Performing a traceability gap analysis is similar to the
notion of using test coverage tools to measure the extent
to which unit test cases cover lines of code, decisions and
branches, methods, and classes [57]. While test coverage
tools are designed to evaluate the rigor of the testing process
and to predict the readiness of the software for release, our
trace coverage tool assesses the extent to which the created
trace links adhere to the guidelines for the project. Later
in this paper, we introduce a set of ten trace coverage met-
rics that measure traceability coverage at the guideline, the
project, and the artifact level.

1.3 Our Approach

Our approach can be applied during the process of prepar-
ing the system for initial certification or continuously through-
out the software development life-cycle in order to achieve
continuous certification [42]. It involves three primary steps.
First, those parts of a guideline that are relevant to the
traceability of a complying development project are trans-
lated into a formal representation. This is a manual step
that produces a formal model of a guideline, which can be
reused across any impacted project. Second, project data is
automatically parsed and relevant information, such as arti-
fact identifiers, artifact types, and trace links, are captured
in a formal representation. Finally, formally specified rules
are used to analyze the data for traceability problems within
an individual guideline, between guidelines, and between a
relevant guideline and project data. The concepts of our
approach as well as its major steps are illustrated in Fig-
ure 1. The guideline-level and project-level models serve as
meta-models for representing traceability within individual
guidelines and projects.

The remainder of the paper is laid out as follows. Section 2
describes five major usage scenarios of our work. Section 3
describes the proposed approach for modeling and assessing
guidelines. Section 4 describes the preparation and assess-
ment of project data as well as the problem types that can
be identified in that data. Section 5 evaluates the differ-
ent usage scenarios against industrial guidelines and relevant
safety-critical software projects. In sections 6 and 7 we dis-
cuss the results and address threats to the validity of those
results. Section 8 reviews related work in the area of re-
quirements traceability and, more specifically, in measuring
conformance between guidelines and project efforts. Finally,
Section 9 concludes by proposing future research directions.

2. USAGE SCENARIOS

In this section, we discuss five major usage scenarios for
our approach and outline their associated challenges.

Scenario 1: Project’s Conformance to Guideline. For
new projects, we provide traceability models that conform to
the relevant guideline(s). These traceability models serves as
a strategic plan for instrumenting the project environment
and defining the processes needed to create, maintain, and
use trace links as prescribed by the guideline. Furthermore,
our process constantly evaluates the project for conformance
to the traceability model.

Scenario 2: Continuous Certification. Consistently
maintaining a project in a ready-to-certify state is challeng-
ing, but certainly not impossible [20]. It requires a rig-
orous verification process built into the development envi-
ronment, continuous integration [18], and accurately main-
tained traceability, available at any time to support the cer-
tification process. Our approach supports ongoing analysis
of the traceability coverage of a system with respect to the
project’s relevant guidelines.

Scenario 3: Integration of External Components.
Safety-critical systems often integrate subsystems developed
by different groups and subcontractors. Each of these sub-
systems carries its own traceability information. However, at
integration time, traceability must be demonstrated across
subsystems. The traceability model extracted from the guide-
lines helps to highlight the required integration-level trace
coverage, and to evaluate its actual coverage in the inte-
grated project. For example, it could take a high-level re-
quirement which is realized across multiple subsystems, and
measure and display its overall traceability coverage.

Scenario 4: Migration to a New or Revised Guide-
line. When an existing product is introduced into a new
market it may be necessary to certify the product under a
new guideline. Similarly, existing guidelines may be revised
(e.g. DO-178B — DO-178C) and the new version becomes
immediately relevant for product development. In such sce-
narios the existing traceability model is updated to reflect
the new and/or modified guidelines, and a gap analysis per-
formed between the updated and original traceability model.
Our approach provides support for identifying trace deficien-
cies introduced by the adoption of a new or revised guideline.

Scenario 5: Multiple Guideline Conformance. Prod-
ucts are often released into multiple markets governed by
different guidelines. Similarly, a single product may con-
tain components governed by different guidelines. In both
cases, the product needs to comply to multiple guidelines.
This introduces the need for creating a merged traceability
model for two or more guidelines. To find the high water-
mark, i.e., the minimum set of traceability requirements that
if followed will satisfy all relevant guidelines, traceability re-
quirements need to be merged and contradictions need to be
addressed [23]. Our systematic process provides a single set
of traceability requirements, which can be used for planning
purposes and for evaluating trace coverage.

These five scenarios provide the context for work described
in the remainder of this paper.

3. GUIDELINE ANALYSIS

In this study, we analyzed five representative technical
guidelines (DO-178B [50], ISO 26262-6 [31], ECSS-E-40 [19],

FDA [21]), with application to four industrial domains: Avi-
ation, Space, Automotive, and Medical. These guidelines
were selected based on a literature review and are discussed
in more detail in Section 5.1. The first step of the pro-
posed approach involves manually creating a model of the
traceability concepts prescribed by a guideline. All stud-
ied guidelines follow a similar structure which starts with a
description of the development life-cycle. This life-cycle con-
sists of multiple processes, each composed of activities, their
prerequisites, and the artifacts they are required to produce.
Additionally, a guideline defines objectives to be fulfilled for
demonstrating safety. One of the most important objectives
is software traceability. In this section, we use the DO-178B
guideline to illustrate our approach. Guidelines were mod-
eled manually by one author of this paper. The process in-
volved reading the guidelines, identifying artifacts and their
required traceability links, and then specifying them for-
mally using F-Logic.

3.1 F-logic

For the formalization, representation, and assessment of
the traceability concepts found in the guidelines and the
projects’ artifact and traceability structure we used the F-
logic (frame logic) language. We chose F-logic because it
is a knowledge representation and ontology language, which
combines the advantages of conceptual modeling with object-
oriented, frame-based languages and offers a declarative and
compact syntax [34]. Features include object identity, com-
plex objects, inheritance, polymorphism, query methods,
and encapsulation. F-logic allowed us to define the required
complex data schema, to reason about differences between
two schemas, to reason about differences between a schema
and instances, and to infer implicit knowledge from a schema.

As elaborated by Kifer et al. [35], the F-logic language
consists of the sets C (object constructors) and V (vari-
ables), logical connectives and quantifiers (V, A, -, +,V, 3),
and auxiliary symbols ([,],(,),{, },=,=>, =, =, >, e
,in, =1, etc.).

Classes are defined as a group of objects or as a subclass
of another class. For example:

Requirement Artifact.
R23 : Requirement. (1)
R23 :=: R25.

expresses that Requirement is a subclass of Artifact, that
R23 is-a or an instance-of Requirement, and that R23 is
equivalent to R25.

Signature atoms specify constraints on classes. For exam-
ple:

TraceLink[source = Artifact].
Activity[output == ArtifactType].

(2)

expresses that the method expressions source and output,
when applied to objects that belong to class TraceLink and
Activity respectively, must yield an object belonging to
class Artifact or ArtifactType. The first signature ex-
pression is a scalar signature (=), the second signature ex-
pression is a set-valued signature (==).

Data atoms apply value-returning methods to objects.
For example:

TL1 : TraceLink[source — ART1]. 3)
ACT1 : Activity[output —» {AT1,AT2}].

Problem #1 Problem #2 Problem #4 Problem #3 / #5
E Of] O —m
>
g .—’O/
Q
£
S |Problem Problem #7 Problem #8 Problem #10
3 #6
STulinterulintern
I I I I I I
! | | | | | |
i T T T T T T
] | ! ! ! ! Problem #9
AERE | | o]
- I I I I
A InseniinsasoliE | QO
ko A A c aA
g = OJ>0O7
Y

|:’ ArtifactType

Missing Artifact Type

Artifact O Activity

Missing Activity -

Ledgend

—>» Control Flow

Artifact Type Mapping
(Guideline — Project)

,,,,,,,,,,,,,,,, e——e Required Trace Path

Trace Link

Trace Link Type

Missing Trace Link Missing Trace Link Type

Figure 2: Problem types at guideline level (problems 1-5) and project level (problems 6—10)

expresses that the methods source and output are applied
to the objects TL1 and ACT1 respectively. Method source
returns the object ART1 and method output returns the set
of objects {AT1,AT2}. As with comparable logic-based lan-
guages, implication rules can be specified in the form of head
< body, where head is a single molecule and body can be a
conjunction of molecules or megated molecules. Thereby, a
molecule is the simplest kind of formula constructed from
the F-logic alphabet introduced above. The following exam-
ple specifies an implication rule:

?X : Activity(allArtifactTypes —»7Y) <
7X(input —»7I, output —»?0)A?I:?7YA?0:7Y.

(4)

This rule states that the method allArtifactTypes returns
for any object of class Activity a unified set of all input
and output artifact types. The example also illustrates the
syntax of variables (7X,?Y,7I,70), named with a question
mark and followed by letters, digits, or underscores.

3.2 Modeling the Guidelines

Formalizing a guideline involves modeling its required ar-
tifact types, activities, and traceability paths.

3.2.1 Step 1: Model Artifact Types

All investigated guidelines define types of artifacts, which
are required to be created during software development.
Guidelines also define which artifact type should include
what information. Based on this information, types of ar-
tifacts that are required by a guideline can be derived (see
Figure 1: ArtifactType).

Ezample: The DO-178B guideline [50] lists all required
artifact types in a dedicated section. One required artifact
type is software requirements data. The guideline states that
“Software Requirements Data is a definition of the high-level
requirements including the derived requirements. This data
should include functional and operational requirements un-
der each mode of operation, performance criteria ...”. The
following molecule defines class SWRegData (Software Re-
quirements Data) as a subclass of ArtifactType, which rep-
resents all artifact types.

SWReqgData :: ArtifactType.

()

Additionally, the following signature atom asserts that class
SWRegData consists of two multi-valued methods: funcReq
(functional requirements) and opReq (operational require-
ments). Both methods correspond to the result type SWReq
(software requirement) and are parameterized by mode0£0p,
the related software requirement’s mode of operation.

SWReqData[funcReq@(mode0£f0p) == SWReq,
opReq@(mode0£0p) == SWReq].

(6)

Class SWReq consists of a single value method, which defines
whether or not the software requirement is derived:

SWReq[derived = boolean).

3.2.2 Step 2: Model Activities

Guidelines also define the activities of the prescribed soft-
ware life-cycle (Figure 1: Activity). Each activity is charac-
terized by the set of artifact types that it creates (Figure 1:
—Output). Additionally, an activity may use one or more
previously created artifact types (Figure 1: —Input).

Ezample: The DO-178B guideline [50] prescribes require-
ments specification as follows: “Inputs to the software re-
quirements process include the system requirements, the hard-
ware interface and system architecture (if not included in
the requirements) from the system life-cycle process, and the
Software Development Plan, and the Software Requirements
Standards from the software planning process. When the
planned transition criteria have been satisfied, these inputs
are used to develop the software high-level requirements.”
The following molecule asserts that class SpecifySWReq is
a subclass of Activity.

(7)

(®)

The following data molecule asserts that SpecifySWReq de-
pends on the input artifact objects SyRD (system require-
ment data), SyA (system architecture), SwDP (software devel-
opment plan), SwRS (software requirements standards) and
produces the output SWRegData.

SpecifySWReq :: Activity.

SpecifySWReq[in — {SyRD, SyA, SwDP, SwRS},
out —» {SWReqData}|.

9)

3.2.3 Step 3: Model Traceability Paths

A guideline also prescribes the traceability to be pro-
vided between artifact types (Figure 1: Traceability). Pre-
scribed traceability is always related to an artifact type as
origin (Figure 1: —0Origin) and an artifact type as destina-
tion (Figure 1: —Destination).

Example: “Traceability between source code and low-level
requirements should be provided to enable verification of the
absence of undocumented source code and verification of the
complete implementation of the low-level requirements.” The
following data atom asserts that RT1 is an element of the
class RequiredTrace (required traceability), which requires
traceability between SWDesignSpec (software design specifi-
cation) and SourceCode (source code).

RT1 : RequiredTraceforigin — SWDesignSpec,

(10)

destination — SourceCode].

3.3 Assessing Guideline Consistency

As illustrated in Figure 2 (problems #1, #2, and #3), we
identified three types of problems that can occur in technical
guideline models. We describe each problem and then dis-
cuss how it can be identified automatically from the formal
model. For this purpose we provide formalized assessment
rules per problem type.

Guideline Problem #1: Missing artifact creation ac-
tivity. Every artifact type that is defined by a guideline
should be created by a software process activity. Otherwise,
artifacts of this artifact type cannot be traced to the activ-
ity that produced the artifact type nor to the artifact types
that were used as input.

Implication: When conducting our case studies, we iden-
tified three potential reasons for the occurrence of this prob-
lem: (i) The definition of software process activities within
the guideline is inconsistent; however we consider this un-
likely given that technical guidelines are written and revised
carefully by a group of subject matter experts. (ii) Activi-
ties or artifact types of the software life-cycle prescribed by
a guideline have not been modeled correctly, leading to in-
consistencies in the guideline model that are detected by our
problem checking rules. (iii) A guideline is written within
a larger context and refers to artifact types that were cre-
ated in a process that is out of the guideline’s scope. For
instance, the guideline ISO 26262 [31] consists of ten parts,
while only part six is related to software development. Fur-
thermore, part six requires traceability to a system require-
ment artifact without defining system requirement creation
activities.

Guideline Problem #2: Missing trace path. When
a guideline requires traceability between two artifact types,
it implicitly requires the existence of a direct or transitive
trace path between both artifact types. This means that
if no trace path exists between these two artifact types, it
is clear at the definition level that the required traceability
between the two artifacts cannot be satisfied.

Implication: As with to problem #1, this problem can
be caused by an inconsistent guideline, an incorrect model
creation, or an unresolved reference to a related guideline.
Guideline Problem #3: Ambiguous trace path. If
a guideline requires traceability between two artifacts, the
existence of a trace path between the artifact types is neces-

sary (see problem #2). If multiple trace paths between two
artifacts are identified, these paths are ambiguous.

Implication: Analogous to problems #1 and #2, the ex-
istence of this problem indicates an inconsistent guideline
model caused by one of the three reasons described in the
implications of problem #1. The main intention for creat-
ing the assessment rules for the problems #1 to #3 was to
automatically evaluate the consistency of the derived guide-
line model and to thereby assure the quality of the model
preparation as described in Section 3.

3.4 Assessing Merged Guidelines

We identified two problem types, which may be caused
when two or more guidelines are relevant for a given product
and must therefore be merged together. Figure 2 illustrates
the two problems (#4 and #5) types.

Guideline Problem #4: Contradicting artifact cre-
ation after merge. Every single guideline defines software
process activities and artifact types, which are produced by
activities. However, if two guidelines define different ac-
tivities for creating the same artifact type, these activities
contradict each other.

Implication: The existence of this problem type indicates
that two or more guidelines cannot be unified into a single
model which respects all of the stated guidelines. If a soft-
ware products needs to comply to both guidelines, measures
must be taken to explicitly distinguish contradicting artifact
type creation activities. Otherwise, the origin of a created
artifact cannot be determined unambiguously.

Guideline Problem #5: Ambiguous trace path after
merge. Every single guideline defines required traceability.
Additionally, trace paths can be derived from the defined
software process activities. If two guidelines require trace-
ability between the same pair of artifact types but prescribe
different trace paths, the merging of these guidelines intro-
duces ambiguous trace paths to the merged model.

Implication: As with the previous problem type, the ana-
lyzed guidelines cannot be unified into one model respecting
all requirements.

4. PROJECT COMPLIANCE

The primary purpose of our work is to analyze compliance
of an individual project’s traceability to its relevant set of
guidelines. Therefore, we also need to formally model the
traceability artifacts found in an individual project and to
compare these to the formal model of the guidelines. We
first describe our process for constructing the project level
Traceability Model.

4.1 Constructing a Project Level Model

The constructed model consists of traceability artifacts,
traceability paths, and traceability links.

4.1.1 Step 1: Parse Project Artifacts and Trace Links

The first step towards a project level traceability model is
to collect all artifacts and trace links from within the soft-
ware project. Typical representations of artifacts are text
documents, hypertext, application database records, source
code, and diagrams. Trace links typically appear in the form
of trace link matrices, hyper links, text references to artifact
identifiers, database records, and through the re-use of ar-
tifact names. Once, all project artifacts and trace links are

Table 1: Problem types and assessment rules to detect them

Problem Assessment rule
1 Missing artifact | Holds true iff neither the artifact type is defined as output of at least one activity nor the artifact type is
creation a direct or transitive part of at least one artifact type that is defined as output of at least one activity.
activity > missing create_activity(?X) <— 7X: ArtifactType[isOut — 1] A ?Y: Activity A ?Y[out —7?X].
2 Missing trace Holds true iff traceability is required between two artifacts but neither a direct nor a transitive trace path
_ path between the two artifact types can be derived from the artifacts graph.
g > missing guideline_path(?X,?Y) <— required path(?X, ?Y) A guideline_path(?X,?Z) A = (?Z :7Y).
5}
> | 3 Ambiguous Holds true iff traceability is required between two artifact types but more then one direct or transitive
| trace path trace paths between the two artifact types can be derived from the artifacts graph.
3 > ambiguous_guideline path(?X,?Y) +—
S required path(?X,?Y) A ?I = count{?Z|Z : guideline path(?X,?Z)} A 7I > 1.
4 Contradicting Holds true iff two different activities create the same artifact type as output after merging two guidelines.
artifact creation | > contradicting activity(?X,?Y,?Z) «—7?X[out —?Z]|A?Y[out —7Z] A = (7X :=: ?Y).
after merge
5 Ambiguous Holds true iff traceability is required between two artifacts but more then one direct or transitive trace
trace path after | paths between the two artifact types can be derived from the artifacts graph after merging two guidelines.
merge > refer to problem #3
6 Missing artifact | Holds true iff an artifact type is required by the guideline but missing in the project.
type > missing artifact_type(?X) «— required artifact_type(?X) Aproject_artifact_type(?Y)A— (7Y :7X).
7 Missing trace Holds true iff traceability is required between two artifacts by the guideline but neither a direct nor a
path transitive trace path between the two artifact types can be found in the project.
= > missing project_path(?X,?Y) <— required path(?X, ?Y) A project_path(?X,?Z) A = (?Z :7Y).
E 8 Invalid trace Holds true iff traceability is required between two artifacts by the guideline but the trace path on guideline
< path level varies from the trace path on project level.
L > invalid path(?X, ?7Y) <—
E ?Z : project_path(?X, ?Y)[hash —?P]A?Q : guideline path(?X, ?Y)[hash —7R]ATP | = 7R.
9 Ambiguous Holds true iff traceability is required between two artifact types by the guideline but more then one direct
trace path or transitive trace paths between the two artifact types can be derived from the project.
> ambiguous_project_path(?X, ?Y) —
required path(?X,?Y) A ?I = count{?Z|Z : project_path(?X,?Y)} A 7I > 1.
10 Missing trace Holds true iff traceability between two artifact types is required by the guideline but the project misses a
link trace link between two artifacts of the required artifact types.
> missing link(?X, ?Y) <— required 1link(7X,?Y) A project_link(?X,?Z) A = (?Z :7Y).

identified, the raw artifact and trace data needs to be parsed
and transformed into our standardized format for further
processing steps. As described in Section 5.3 we developed
a number of automated parsers to perform this task.

4.1.2 Step 2: Extract Artifacts and Trace Types

Once all data related to artifacts and trace links has been
preprocessed, artifact and trace link types can be assigned
to the data records. By aggregating artifacts and trace links
by type, a project traceability model can be derived.

4.1.3 Step 3: Map Guideline and Project Model

The project traceability model, created in the previous
step, contains information about a project’s artifact types,
trace link types, and trace paths at the same abstraction
level as the guideline traceability model (see Section 3).
To assess whether or not a project fulfills the traceability
requirements defined by a guideline, artifact types of the
project traceability model need to be mapped to the corre-
sponding artifact types of the guideline traceability model.

4.2 Assessing Project Data vs. Guideline

By comparing the modeled project data against a guide-
line model the following problem types can be identified.

Compliance Problem #6: Missing artifact type. The
artifact types required by a guideline must be available within
a project in order for traceability to be established between
them. To check this necessary precondition, the complete-

ness of artifact types at the project level is assessed.

Compliance Problem #7: Missing trace path. In ad-
ditional to problem #6, traceability required by a guideline
between artifact types can only be established at the project
level if a trace path between the two artifact types is avail-
able at the project level.

Compliance Problem #8: Invalid trace path. A trace
path required by a guideline must not merely exist at the
project level, but its route must also conform to the pre-
scription of the guideline. To assess this problem, the arti-
fact route of a trace path at project level can be compared
with the artifact route of a trace path at the guideline level.

Compliance Problem #9: Ambiguous trace path.
Traceability is ambiguous if multiple trace paths between
two artifact types can be identified (compare problem #3).

Compliance Problem #10: Missing trace link. In
addition to problem #7, traceability between artifact types
that is required by a guideline can only be considered com-
plete if at the project level every single artifact of the re-
quested source artifact type is traced directly via a trace
link or transitively via a trace path to an artifact of the re-
quested target artifact type. We consider every required but
non-existing direct or transitive trace link a missing trace.

5. CASE STUDIES

In order to evaluate our approach we conducted several
case studies that refer back to the usage scenarios described

in Section 2. We consider the support of Scenario 1 (Sup-
port for Project Planning) as a by-product of our approach.
Once, the traceability requirements of a guideline have been
successfully modeled (see Section 3.3) our prototype is able
to generate a traceability model that conforms to selected
guidelines. This model can be used by stakeholders as they
establish a traceability plan for their project. Supporting
Scenario 2 (Constant Certifiability) and Scenario 3 (Inte-
gration of External Components) require a similar assess-
ment procedure, which compares a project’s artifacts and
trace links against applicable guidelines. In order to demon-
strate the capabilities of our approach in supporting those
usage scenarios, we assessed seven safety-critical software
projects against their respective technical guidelines. Sup-
porting Scenario 4 (Migration to New or Revised Guideline)
and Scenario 5 (Multiple Guideline Conformance) also re-
quire a similar assessment procedure, which compares two
guideline models with each other. We conducted a second
analysis in which we performed five comparisons among the
five technical guidelines relevant for the assessed projects in
the previous case study. The five guidelines and seven safety-
critical projects for those studies are briefly introduced in the
following subsections.

5.1 Technical Guidelines

Throughout the case studies, we use five technical guide-
lines applicable for the development of safety-critical soft-
ware in different domains. Table 2 shows these guidelines
and each of their application domains. It also provides a
quantitative overview in terms of relevant concepts for our
approach. The number of required artifact types provides an
impression of the complexity of the described development
process per guideline, while the number of trace paths refers
to requested traceable connections between a pair of artifact
types, which may be connected through a single trace link
or a chain of trace links. All five guidelines were modeled
according to the process described in Section 3. Each model
was assessed for problems #1 to #3 to ensure its correctness
and consistency. Once all problems were resolved, all mod-
els were reviewed by a colleague with extensive experience
in safety-critical development (not an author of this paper)
for their accordance to the modeled guideline.

5.2 Assessed Projects

We analyzed seven different projects. Along with a short
project description, we list relevant guidelines, the number
of documented artifacts that were analyzed, and the number
of analyzed, relevant trace links.

TOPCASED-SAM (TC-SAM) [56]. A subproject of
the TOPCASED initiative, which provides a set of modeling,
transformation and verifying tools for functional structured
analysis. Relevant guidelines: ISO 26262, ECSS-E-40, DO-
178B; Artifacts: 123 requirements, 14 designs, 23 test cases,
15 test results, 1018 classes; Relevant trace links: 250.

TOPCASED-REQ (TC-REQ)[55]. Is a subproject of
the TOPCASED initiative. The project’s aim is developing
a generic, tool independent way for ensuring traceability be-
tween requirements and model elements and for managing
requirements. Relevant guidelines: ECSS-E-40, ISO 26262,
DO-178B; Artifacts: 58 requirements, 9 designs, 6 test cases,
6 test results, 638 classes; Relevant trace links: 56.

Table 2: Characteristics of assessed guidelines

| Guideline || Domain Relevant concepts
DO-178B/ ED-12B Aviation 31 artifact types
[50] 8 required trace paths
ISO 26262-6 [31] Automotive | 21 artifact types
4 required trace paths
ECSS-E-40 [19] Space 73 artifact types
8 required trace paths
FDA Guide [21] Medical 28 artifact types
10 required trace paths
TOPCASED quality || Cross 21 artifact types
kit (TC-QK)[53] domain 1 required trace path

GeneAuto [22]. An open-source toolset for converting
Simulink, Stateflow, and Scicos models into executable pro-
gram code. C code output is supported, Ada output is un-
der development. Relevant guideline: DO-178B; Artifacts:
69 requirements, 216 design description artifacts, 240 source
code artifacts, 12 test cases; Relevant trace links: 209.

Secure Auditing for Linux (SAL) [51]. Develops a
kernel level auditing package for Red Hat Linux that is com-
pliant with the Common Criteria specifications (C2 level
equivalency) and provides features to protect logged infor-
mation from unauthorized modification through encryption
techniques. Relevant guideline: project dependent; Arti-
facts: 71 requirements, monolithic design description; Rele-
vant trace links: 0 (other trace links exist).

Rate Adjustment by Managing Inflows (RAMI)
[47]. Develops a TCP/IP flow control module for the Linux
kernel and a suite of network evaluation utilities. Relevant
guideline: project dependent; Artifacts: 48 requirements,
120 design description artifacts, source code functions 275,
test cases not accessible; Relevant trace links: 553.

CONNECT [14]. An open-source software system and
community that promotes IT interoperability in the U.S.
healthcare system. CONNECT enables secure, electronic
health data exchange among healthcare providers, insur-
ers, government agencies, and consumer services. Relevant
guideline: FDA Guide; Artifacts: 9 risks, 27 system re-
quirements, 55 functional requirements, 27 non-functional
requirements, 179 user stories, 6 technical stories, 10 epics,
290 improvements, 245 feature request, 775 bugs, 7 design
artifacts, 1919 source code classes, 770 development tasks,
247 QA tasks, 70 research tasks, 254 infrastructure tasks,
170 documentation tasks; Relevant trace links: 16764.

Health Care Protocol Translator (HCPT) [28]. Pro-
vides a middleware system, which creates a bridge between
different protocols, such as HL7 and DICOM. The system
provides a web based interface, which allows users to search
and synchronize information within one HIS or PACS system
to another HIS or PACS system. Relevant guideline: FDA
Guide; Artifacts: 12 use cases, 37 requirements, 4 model
components, 41 model classes, 35 source code classes, 8 test
cases, 14 test results; Relevant trace links: 189.

5.3 Prototype

We created a prototypical implementation that leverages
the F-logic open source development environment Flora-2
[64]. We created traceability models for the five technical
guidelines as well as inference rules to automatically as-

sess the captured data for the previously described problem
types. Additionally, we developed crawlers to parse rele-
vant project data (artifacts and trace links) from the seven
studied software projects. Our prototype derives the project
traceability model from the parsed data and transforms all
information into Flora-2 expressions. By applying the devel-
oped reasoning rules per problem type (see Table 1) to the
captured project and guideline related facts we were able to
assess both the guidelines and compliance of each project
against its relevant guidelines. Results from this evaluation
are presented in the following subsections.

5.4 Project Assessment Results

Table 3 shows aggregated results of the projects versus
guideline assessment. The first and second column refer to
the project and the guideline that were compared. Columns
three to seven refer to the five problem types that are rel-
evant for this assessment. The first number within a cell
shows the percentage of a problem’s occurrence in relation
to the total occurrence of the assessed concept within the
project, while the number in brackets shows the problem
occurrence count. Cells with a dash refer to problems that
could not be assessed because preconditions in terms of ar-
tifacts or trace links were not available for the particular
project. In Figure 3, we visualize the assessment results of
project TC-SAM vs. guideline DO-178B.

Table 3: Assessment results per problem type for
each project against its relevant guidelines

Assessment Occurrence of problem type
Project +— Guideline || #6 | #7 |#8[#9] #10
DO-178B 66% (4 88% (7)[0%|0%| 10% (8)

ISO 26262-6|[60% (3
ECSS-E-40 |[13% (1
DO-178B
ISO 26262-6|{60% (3
ECSS-E-40 |[13% (1

(100% (4)|0%[0%| 18% (45)
(
(
(
(
GeneAuto |DO-178B 50% (3
(
(
(
(

63% (5)|0%|0%| 10% (8)

(

TC-SAM E
88% (1){0%[0%| 0% (0)

(

(

(

(

100% (4)[0%[0%| 0% (0)

)
)
)
)
TC-REQ)
)| 63% (5)[0%[0%| 0% (0)
)
)
)
)
)

88% (7)[0%[0% [80% (167)
100% (8)|0%|0%| 0% (0)

88% (7)[0%|0% | 13% (74)

70% (7)[0%|0% 9% (1657)
100% (10)

SAL ECSS-E-40 |[38% (3
RAMI DO-178B
CONNECT |FDA Guide || 0% (0
FDA Guide (|81%

HCPT 0%|0%| 33% (62)

5.5 Guideline Assessment Results

Table 4 shows aggregated results of the guideline against
guideline assessment. The first and the second column refer
to the two guidelines A and B that were compared. Columns
three to five refer to differences in terms of required artifact
types between A and B. Column three shows the number of
artifact types that are required in A, but not in B; column
four refers to the number of artifact types that are required
in A and B; and column five refers to the number of artifact
types that are required in B, but not in A. Similarly, columns
six to eight refer to differences in terms of required trace
paths between both guidelines. We also assessed all five
guideline combinations for problems #4 and #5 and found
that neither problem types were present for the assessed
guideline combinations.

—— |

System 1 Sof_tware 9 Design Software
@ - Requirement e "
0 Requirement | e |—{ Descrition Architecture
R Speqﬁc.atlon
-
o
Q Source
Code
I Test Test
Case Result
2
= SoMare ¢ Test Test
<< Requirement
%) P Case Result
%) Specification
= ? ?
Software 3 —
Archictecture | | Fource
? Code
> Design
Description
e——eo Required/Available Trace Path
2 |:| ArtifactType ?—e Missing Trace Path
& Trace Link Type
3 Missing Artifact Type Missing Trace Link Type

Figure 3: Guideline traceability model of DO-178B
vs. project traceability model of TC-SAM

6. DISCUSSION

All studied cases were safety-critical software projects that
are required to conform with one of the technical guidelines.
The fact that our project assessment results (see Table 4)
show that none of the projects provided sufficient traceabil-
ity to conform with its relevant guideline(s) means that none
of them can be considered as ready for certification.

6.1 Project Assessment

Before we start to discuss the results of every problem
in detail, it should be noted that several problem types are
interdependent. The existence of problem #6 means that
not a single artifact of the missing artifact type exists at
project level. This implies that not a single required trace
link (problem #10) was established from or to an artifact
of that artifact type. The correct amount of missing trace
links can be calculated if the second artifact of the required
trace link exists within the project. However, if source and
target artifacts are both missing (problem #7), the actual
number of missing trace links cannot be determined, because
all required elements (source artifact, target artifact, trace)
of the trace link are missing completely. Due to this de-
pendency, problem #7 can be used as a leading indicator to
detect critical areas of the project with respect to traceabil-
ity. These problem interdependencies should be considered
when interpreting the assessment results of a single project.

Missing artifacts (problem #10) indicate that trace links
are incomplete at the project level and thus traceability anal-
ysis might lead to wrong assumptions and conclusions. To
solve that issue, projects suffering from this problem need to
add missing trace links for achieving trace link completeness
at the project level with respect to the relevant guideline.
For example, the GeneAuto project with more than 50%
missing trace links, will require substantial effort to resolve
this problem. RAMI and CONNECT also suffer from a high
amount of missing trace links.

The absence of required trace paths at the project level
(problem #7) indicates that required trace links between

Table 4: Comparison of guideline migrations in terms of required artifact types and trace paths

Guideline Comparison Artifact types (AT) Trace paths (TP)

A+—B Aar \ Bar | Aar N Bar | Bar \ Aar | Arp\ Brp | Arp N Brp | Brp\ Arp
TC-QK ISO 26262-6 0 3 3 0 1 3
ISO 26262 DO-178B 0 6 2 0 4 4
DO-178B ECSS-E-40 0 8 1 0 8 1
DO-178B FDA Guide 0 8 3 0 8 2
ECSS-E-40 FDA Guide 1 8 3 1 8 2

project artifacts of two types are missing. This means that
required trace links must be established to conform with
the guideline. As outlined in Table 4, no project has been
setup with the capability of providing all the required trace
paths. Most projects suffer from a high percentage (more
than 70%) of missing trace paths at the project level.

The absence of required artifact types at the project level
(problem #6) indicates that even the preconditions for es-
tablishing traceability conforming with a guideline are not
fulfilled. Thus, artifacts of missing artifact types need to be
created to enable a project to conform with a guideline.

Divergence of trace paths at the guideline and project level
(problem #8) would indicate that even though traceability
required by a guideline is available at the project level, it
carries the wrong semantics and might not be usable to ad-
dress the traceability goals of the guideline assigned to a
specific trace path. The existence of ambiguous trace paths
(problem #9) indicates that project artifacts cannot unam-
biguously be traced to their origin. As with problem #8,
ambiguous trace paths at the project level carry wrong or
at least ambiguous semantics and might not be usable to
address related traceability goals. As a high percentage of
the required trace paths were missing or incomplete for the
evaluated projects, it is not surprising that problems #8 and
#9 were not identified in the examined projects.

6.2 Guideline Assessment

The guideline assessment results shown in Table 3 demon-
strate that differences among technical guidelines are rela-
tively small in terms of required traceability. It becomes
apparent that the TC-QK guideline, an in-house guideline
for projects of the TOPCASED initiative, is a subset of ISO
26262-6, which is a subset of DO-178B. Similarly, DO-178B
is a subset of the FDA Guide as well as ECSS-E-40. This im-
plies that for a project, which complies to a complex guide-
line like the FDA Guide, no additional effort is required
to conform with ISO 26262-6 or DO-178B. The contrary is
true, if a project complies to a less restrictive guideline such
as ISO 26262-6 and then needs to conform with ECSS-E-
40, additional artifact types and trace paths will need to be
added to the project.

7. THREATS TO VALIDITY

When planning and conducting our case studies we care-
fully considered validity concerns. The fact that our cases
diverge across multiple guidelines and industrial projects of
various sizes and domains suggests that our approach is ap-
plicable across a wide variety of projects. However, we are
aware of the fact that a larger evaluation is required in order
to gain generalizable results.

A potential threat exists due to the required studying and
understanding of a guideline and the creation of the respec-
tive model. The responsible person may misunderstand or
entirely miss requirements of a guideline. In order to miti-
gate that threat, we took three measures. First, we followed
the same procedure for all analyzed guidelines, searching
for the concepts: artifact type, activity, and required trace
paths in subsequent passes. Second, we identified poten-
tial consistency problems that can occur within a guideline
model and support their identification within our prototype.
Third, all guideline models used for our case study were re-
viewed by a colleague with extensive experience in the de-
velopment of safety-critical software.

Another potential threat exists in the preparation of the
analyzed project data. We examined carefully the structure
of each project and its available artifacts. However, the ar-
tifacts that we found were diverse and often spread across
multiple tools and repositories. In order to identify possible
problems, we performed where possible completeness and
consistency checks on the captured data. Nonetheless, there
remains a risk that we may have missed or misclassified cer-
tain artifacts or trace links. For ongoing work, we plan to
involve project stakeholders in order to get feedback on the
correctness and completeness of the captured data.

8. RELATED WORK

Several authors have conducted empirical research on re-
quirements traceability and argued the need for planned
traceability and defined traceability strategies. Gotel and
Finkelstein showed that understanding the stakeholders re-
sponsible for the creation and maintenance of trace links is
essential for improving the outcome of the tracing process
[25]. Ramesh [45] identified two groups of traceability users,
which he referred to as low-end and high-end users. While
low-ends users rely on simple dependencies among require-
ments, high-end users leverage more sophisticated traceabil-
ity schemes. Ramesh and Jarke [46] conducted a large prac-
titioner and tool study on traceability. They pointed out
that traceability links should be strongly typed in order to
avoid semantic misinterpretations. As a result, the authors
proposed a traceability meta-model and reference models as
guidance for practitioners. Gotel et al. described the trace-
ability life-cycle and highlighted the importance of planning
and managing traceability in addition to the daily activities
of creating, maintaining, and using trace links [24]. In prior
work we also advocated the use of a traceability informa-
tion model as a necessary condition to employ traceability
[37, 39]. Arkley and Riddle [2] conducted a case study on
a software project, which successfully leveraged traceability.
They concluded that the success of the observed traceability
system was mainly influenced by two facts: (i) general trace-

ability needs were examined to support project participants
in their tasks, and (ii) the traceability information model
was systematically tailored to the identified needs.

Several researchers investigated aspects of traceability in
regulated industries. Mc Caffery et al. comprehensively
discussed traceability requirements for medical device soft-
ware development [9]. Hill and Tilley developed a database
schema for tracing between a safety process improvement
model, safety requirements and taxonomies, and software
safety risks [29]. Peraldi-Frati and Albinet presented an
approach for tracing non-functional requirements such as
safety, timing, and performance across the life-cycle artifacts
of an automotive system design [44]. Katta and Stalhane de-
veloped a very detailed traceability model depicting numer-
ous artifact types and related links for safety-critical systems
such as nuclear power stations [33]. Similarly, Sanchez et al.
described a traceability meta-model and supporting tech-
niques for integrating tracing into the model driven devel-
opment of safety critical systems [52]. Borg et al. [4] investi-
gated the reusability of traceability in safety critical control
systems that had evolved over more than 30 years. However,
the focus of all these publications was on prescribing general
traceability techniques and practices as opposed to evaluat-
ing traceability compliance. One exception is our prior work
[39], in which we reported on traceability problems that were
observed by members of the U.S. Food and Drug Adminis-
tration (FDA) responsible for evaluating traceability docu-
mentation as part of medical device approval. Several of the
metrics described in this paper emerged from that study.

This paper presents a technique for measuring confor-
mance of a project’s traceability to relevant technical guide-
lines. To the best of our knowledge there have been no other
efforts to create traceability metrics for evaluating actual
traceability coverage. The closest work is that by Dinesh et
al., who used natural language processing (NLP) techniques
to extract formal process representations from regulatory
documents. They used these process representations to an-
alyze an organization’s conformance to the regulation [17].
However, the authors focused on analyzing activities explic-
itly logged in a database. In contrast, our approach retrieves
and analyzes artifacts and their associated trace links from
project repositories, processes these to generate a structural
model of traceability in the project and then compares this
to the model prescribed in the guideline.

Researchers proposed solutions to formalize safety stan-
dards, regulations, and law for supporting compliance ver-
ification against those texts. De la Vara et al. [16] de-
veloped a generic meta-model for safety-standards, which is
larger and more generic than our guideline model as its scope
goes far beyond software traceability. Panesar-Walawege et
al. [43] proposed a UML profile for ensuring software de-
sign compliance to the IEC61508 standard. Similarly, Ne-
jati et al. defined a traceability information model, which
links safety related requirements with software design com-
ponents [41]. Maxwell and Antén [40] formalized legal texts
of the Health Insurance Portability and Accountability Act
as production rule models to support regulatory compliance
analysis. Breaux et al. performed extensive research on for-
malizing legal text for supporting compliance verification of
software requirements with regulations in order to establish
traceability between requirements and regulations [6, 8, 7].

Furthermore, metrics have been proposed for a variety of
other software engineering activities. For example, Ambriola

and Gervasi developed a set of process metrics for evaluating
stability and efficiency of the requirements analysis process
[1]. Their metrics were designed to identify risky or inef-
ficient behavior during the requirements analysis process,
so that managers could take corrective actions. Other re-
searchers and practitioners proposed and used test-coverage
metrics for measuring and evaluating the quality of the test-
ing process. These metrics are now used ubiquitously across
many software development environments.

Finally, researchers developed techniques for reverse en-
gineering software development processes through mining
project repositories. For example, Hindle extracted software
artifacts from software repositories and used these to infer
the underlying software development process [30]. Similarly,
Cook and Wolfe proposed a technique to instrument exist-
ing software systems to discover the software development
process [15]. We also mine software repositories to extract
traceability data. However, we use this data to infer specific
problems with the traceability process rather than attempt-
ing to completely reconstruct the development process.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have focused primarily on the gap be-
tween the traceability that is prescribed by technical guide-
lines and the traceability that is implemented in practice.
This gap makes it difficult for organizations and certifiers to
fully evaluate the safety of developed software systems. We
presented an approach, which uses a manually created model
of a guideline’s required traceability and related concepts to
analyze project data and to identify areas of traceability fail-
ure. Furthermore, we defined ten types of traceability prob-
lems that may occur when a project aims to conform to one
or more guidelines. Those problem types cover, for example,
missing traceability paths as well as redundant and/or in-
consistent data. Our approach facilitates the identification
of those problems both during initial certification efforts and
then continuously throughout the project’s life cycle. As a
byproduct we provide traceability models that conform to a
guideline and can be used for planning a project’s traceabil-
ity. Furthermore, we support the comparison of guidelines
in order to assist the migration of a project from compliance
to an initial set of guidelines towards compliance to a revised
or expanded set of guidelines.

We used our approach to evaluate the traceability of seven
safety-critical software systems against a set of five techni-
cal guidelines and found that none of the evaluated projects
was in full conformance to its relevant traceability guide-
lines. This suggests that these projects were not ready for
certification and emphasizes the importance of performing
a traceability analyses.

Future work will focus on the presentation of problems
and on generalizing the access to project data for easier and
continuous assessment. We will also extend our catalog of
traceability problem classes and detection metrics. Finally,
in addition to conformance of traceability data with tech-
nical guidelines, we are interested in extensions that unify
various qualities into a single model.

10. ACKNOWLEDGMENTS

We are funded by the German Ministry of Education and
Research (BMBF): grant 16V0116 and US National Science
Foundation Grant CCF-1319680.

11.
1]

[10]

[11]

[12]

[13]

REFERENCES

V. Ambriola and V. Gervasi. Process metrics for
requirements analysis. In Proc. of the 7th Furopean
Workshop on Software Process Technology (EWSPT),
Kaprun, Austria, pages 90-95, 2000.

P. Arkley and S. Riddle. Tailoring traceability
information to business needs. In Proc. of the 14th
IEEFE International Requirements Engineering
Conference (RE), Minneapolis/St. Paul, Minnesota,
USA, pages 239244, 2006.

BEL-V, BfS, CSN, ISTec, ONR, SSM, STUK.
Licensing of safety critical software for nuclear
reactors — common position of seven european nuclear
regulators and authorised technical support
organisations, 2013.

M. Borg, O. C. Gotel, and K. Wnuk. Enabling
traceability reuse for impact analyses: A feasibility
study in a safety context. In Proc. of the 7th
International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE), San
Francisco, USA, pages 72-78. IEEE, 2013.

E. Bouillon, P. Méder, and I. Philippow. A survey on
usage scenarios for requirements traceability in
practice. In J. Doerr and A. L. Opdahl, editors,
Requirements Engineering: Foundation for Software
Quality, volume 7830 of Lecture Notes in Computer
Science, pages 158-173. Springer, 2013.

T. D. Breaux, A. I. Antén, and E. H. Spafford. A
distributed requirements management framework for
legal compliance and accountability. Computers &
Security, 28(1):8-17, 2009.

T. D. Breaux and D. G. Gordon. Regulatory
requirements traceability and analysis using
semi-formal specifications. In Proc. of the 19th
International Working Conference on Requirements
Engineering: Foundation for Software Quality
(REFSQ’13), Essen, Germany, pages 141-157.
Springer, 2013.

T. D. Breaux and A. Rao. Formal analysis of privacy
requirements specifications for multi-tier applications.
In Proc. of the 21st IEEE International Requirements
Engineering Conference (RE), Rio de Janeiro, Brasil,
pages 14-23. IEEE, 2013.

F. M. Caffery, V. Casey, M. Sivakumar, G. Coleman,
P. Donnelly, and J. Burton. Software and Systems
Traceability, chapter Medical Device Software
Traceability, pages 321-339. Springer, 2011.
CCMB-2006-09-001: Common criteria for information
technology security evaluation: Part 1: Introduction
and general model, v3.1 r1, 2006.

J. Cleland-Huang, O. Gotel, J. Huffman Hayes,

P. Méder, and A. Zisman. Software traceability:
Trends and future directions. In Proc. of the 36th
International Conference on Software Engineering
(ICSE), Hyderabad, India, 2014.

CoEST: Center of excellence for software traceability,
http://www.CoEST .org.

C. Comar, F. Gasperoni, and J. Ruiz. Open-do: An
open-source initiative for the development of
safety-critical software. In Proc. of the 4th IET
International Conference on Systems Safety, London,
UK, pages 1-5. IET, 2009.

(14]
(15]

(16]

(17]

(18]

(19]

20]

(21]
22]

23]

(24]

[25]

[26]

27]

28]

29]

CONNECT, developer.connectopensource.org, 2013.
J. E. Cook and A. L. Wolf. Software process
validation: quantitatively measuring the
correspondence of a process to a model. Transactions
on Software Engineering and Methodology (TOSEM),
8(2):147-176, 1999.

J. L. de la Vara and R. K. Panesar-Walawege.
Safetymet: A metamodel for safety standards. In Proc.
of the 16th International Conference on Model Driven
Engineering Languages and Systems (MODELS),
Miami, USA, pages 69-86. Springer, 2013.

N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. Checking
traces for regulatory conformance. In Proc. of the 8th
International Workshop on Runtime Verification
(RV), Budapest, Hungary, pages 86—103. Springer,
2008.

P. Duvall, S. Matyas, and A. Glover. Continuous
Integration: Improving Software Quality and Reducing
Risk. Addison-Wesley, 2007.

ECSS. ECSS-E-40C: principles and requirements
applicable to space software engineering, 2009.

P. Farail, P. Goutillet, A. Canals, C. Le Camus,

D. Sciamma, P. Michel, X. Crégut, and M. Pantel.
The TOPCASED project: a toolkit in open source for
critical aeronautic systems design. Ingenieurs de
I’Automobile, 1(781):54-59, 2006.

Food and Drug Administration. General Principles of
Software Validation; Final Guidance for Industry and
FDA Staff, 2002.

Gene-Auto, gforge.enseeiht.fr/projects/geneauto, 2013.
D. G. Gordon and T. D. Breaux. A cross-domain
empirical study and legal evaluation of the
requirements water marking method. Requirements
Engineering, 18(2):147-173, 2013.

O. Gotel, J. Cleland-Huang, J. Hayes, A. Zisman,

A. Egyed, P. Griinbacher, A. Dekhtyar, G. Antoniol,
J. Maletic, and P. Méder. Traceability fundamentals.
In J. Cleland-Huang, O. Gotel, and A. Zisman,
editors, Software and Systems Traceability, pages 3—22.
Springer London, 2012.

O. Gotel and A. Finkelstein. Extended requirements
traceability: results of an industrial case study. In
Proc. of the 3rd IEEE Int. Symp. on Requirements
Engineering (RE), Annapolis, USA, 1997.

O. Gotel and C. Finkelstein. An analysis of the
requirements traceability problem. In Proc. of the 1st
IEEE Int. Conf. on Requirements Engineering (RE),
Colorado Springs, USA, pages 94 —101, apr 1994.

W. S. Greenwell, E. A. Strunk, and J. C. Knight.
Failure analysis and the safety-case lifecycle. In Proc.
of the 7th Working Conference on Human Error,
Safety and Systems Development, Toulouse, France,
pages 163-176, 2004.

Health Care Protocol Translator (HCPT),
svn.assembla.com/svn/HIT Team, 2013.

J. Hill and S. Tilley. Creating safety requirements
traceability for assuring and recertifying legacy
safety-critical systems. In Proc. of the 18th IEEE Int.
Requirements Engineering Conference (RE), Sydney,
Australia, pages 297-302, 2010.

[30]

[38]

[42]

A. Hindle. Software process recovery: Recovering
process from artifacts. In G. Antoniol, M. Pinzger,
and E. J. Chikofsky, editors, Proc. of the 17th
Working Conference on Reverse Engineering
(WCRE), Beverly, USA, pages 305-308, 2010.

ISO. 1S0:26262-6:2011 Road vehicles - functional
safety - part 6: Product development at the software
level, 2011.

H. Jonsson, S. Larsson, and S. Punnekkat. Agile
practices in regulated railway software development.
In Proc. of the 23rd IEEE International Symposium
on Software Reliability Engineering Workshops
(ISSREW), Dallas, Texas, pages 355-360. IEEE, 2012.
V. Katta and T. Stalhane. A conceptual model of
traceability for safety systems. In CSDM-Poster, 2010.
M. Kifer and G. Lausen. F-logic: A higher-order
language for reasoning about objects, inheritance, and
scheme. In Proc. of the ACM SIGMOD International
Conference on Management of Data, Portland, USA,
pages 134-146, 1989.

M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. Journal
of the ACM (JACM), 42(4):741-843, 1995.

X. Larrucea, A. Combelles, and J. Favaro.
Safety-critical software [guest editors’ introduction].
IEEE Software, 30(3):25-27, 2013.

P. Méder, O. Gotel, and I. Philippow. Getting back to
basics: Promoting the use of a traceability information
model in practice. In Proc. of the 5th International
Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE), Vancouver, Canada,
pages 21 —25, 2009.

P. Méder, O. Gotel, and I. Philippow. Motivation
matters in the traceability trenches. In Proc. of the
17th IEEE International Conference on Requirements
Engineering (RE), Atlanta, Georgia, USA, pages
143-148, 2009.

P. Méder, P. L. Jones, Y. Zhang, and

J. Cleland-Huang. Strategic traceability for
safety-critical projects. IEEE Software, 30(3):58-66,
2013.

J. C. Maxwell and A. I. Anton. A refined production
rule model for aiding in regulatory compliance.
Technical report, North Carolina State University.
Department of Computer Science, 2010.

S. Nejati, M. Sabetzadeh, D. Falessi, L. Briand, and
T. Coq. A sysml-based approach to traceability
management and design slicing in support of safety
certification: Framework, tool support, and case
studies. Information and Software Technology,
54(6):569-590, 2012.

The Open-DO Initiative, www.open-do.org, 2013.

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]
[55]

[56]

[57]

R. K. Panesar-Walawege, M. Sabetzadeh, and

L. Briand. A model-driven engineering approach to
support the verification of compliance to safety
standards. In Proc. of the 22nd IEEE International
Symposium on Software Reliability Engineering
(ISSRE), Hiroshima, Japan, pages 30-39, 2011.
M.-A. Peraldi-Frati and A. Albinet. Requirement
traceability in safety critical systems. In Proc. of the
1st Workshop on Critical Automotive applications:
Robustness & Safety, CARS’10, Valencia, Spain,
pages 11-14, 2010.

B. Ramesh. Factors influencing requirements
traceability practice. Communications of the ACM,
41(12):37 — 44, 1998.

B. Ramesh and M. Jarke. Toward reference models for
requirements traceability. IEEE Transactions on
Software Engineering, 27(1):58-93, 2001.

Rate Adjustment by Managing Inflows (RAMI),
www.chris-edwards.org/340, 2013.

P. Rempel, P. Médder, and T. Kuschke. An empirical
study on project-specific traceability strategies. In
Proc. of the 21st IEEE International Requirements
Engineering Conference (RE’13), Rio de Janeiro,
Brasil, pages 195-204, 2013.

P. Rempel, P. Méader, T. Kuschke, and I. Philippow.
Requirements traceability across organizational
boundaries - a survey and taxonomy. In Proc. of the
19th International Working Conference on
Requirements Engineering: Foundation for Software
Quality (REFSQ’13), Essen, Germany, pages
125-140. Springer, 2013.

RTCA/EUROCAE. DO-178B/ED-12B: Software
considerations in airborne systems and equipment
certification, 2000.

Secure Auditing for Linux (SAL),
secureaudit.sourceforge.net, 2013.

P. Sdnchez, D. Alonso, F. Rosique, B. Alvarez, and
J. A. Pastor. Introducing safety requirements
traceability support in model-driven development of
robotic applications. IEEFE Transactions on
Computers, 60(8):1059-1071, 2011.

TOPCASED the open-source toolkit for critical
systems, www.topcased.org, 2013.

Flora-2, http://flora.sourceforge.net, 2013.
TOPCASED-REQ,
gforge.enseeiht.fr/projects/topcased-req, 2013.
TOPCASED-SAM,
gforge.enseeiht.fr/projects/topcased-sam, 2013.

Q. Yang, J. J. Li, and D. M. Weiss. A survey of
coverage-based testing tools. The Computer Journal,
52(5):589-597, 2009.

