
Semi-automated Traceability Maintenance: An Architectural Overview of
traceMaintainer

Patrick Mäder1, Orlena Gotel2 and Ilka Philippow1

1Department of Software Systems
Ilmenau Technical University, Germany

patrick.maeder|ilka.philippow@tu-ilmenau.de

2Department of Computer Science
Pace University, New York, USA

ogotel@pace.edu

Abstract

traceMaintainer is a tool that supports an approach for
maintaining post-requirements traceability relations after
changes have been made to traced model elements. The up-
date of traceability relations is based upon predefined rules,
where each rule is intended to recognize a development ac-
tivity applied to a model element. Little manual effort or
interaction with the developer is required. traceMaintainer
can currently be used with a number of commercial software
development tools and enables the update of traceability re-
lations stored within these tools. This paper provides an
overview of traceMaintainer’s architecture and major com-
ponents.

Keywords: Traceability, development activity recogni-
tion, rule-based traceability maintenance.

1 Introduction
traceMaintainer supports the (semi-)automated update

of traceability relations between requirements, analysis and
design models of software systems expressed in UML ([2],
[1]). It can update traceability relations with little manual
effort, a commonly cited barrier to traceability use within
industry. This is possible by analyzing elementary change
events that have been captured while working within a third-
party UML modeling tool. Within the captured flow of
events, development activities comprised of several events
are recognized. These development activities are expressed
as predefined rules. Rules consist of masks requiring an
event with certain properties. Once recognized, the corre-
sponding rule gives a directive to update impacted traceabil-
ity relations to restore consistency.

The traceMaintainer prototype consists of several com-
ponents and is designed with the objective of creating an
implementation that is as independent as possible from spe-
cific CASE tools. The central component, the rule en-
gine, handles the activity recognition and computes mainte-
nance directives. It provides an interface for receiving new

change events and requires an interface for querying and
updating traceability relations. The change event interface
will be used by a tool-specific event generator that recog-
nizes changes to model elements and collects data about the
changed element in order to create change events for the
rule engine. The required query and update interface also
has to be implemented by a tool-specific adapter. Depend-
ing on where the traceability relations are stored, the adapter
gives access to relations stored within the model or to an
external relationship repository such as EXTESSY Tool-
NET. In the prototype, we have implemented our own trace-
STORE repository that stores relations within the tool, but
provides significantly more functionality in terms of trace-
ability than the base modeling tool itself.

In addition, a rule engine reads a rule catalog stored in
XML format. This catalog can be edited and validated with
a specific rule editor. Each of the major components is de-
scribed further in this paper.

traceMAINTAINER

Model

Traces

Event 
Generator
Add-in

traceSTORE
Add-in

Rules

Change Events

Link Queries and
Updates

Rule Editor

UML Modeling Tool

Rule Catalog

Rule Engine

LinkUpdateManager

Event
Cache

OpenActivity
Cache

EventController

Figure 1. Overview of the traceMaintainer
components

2 Rule Engine
The rule engine is the main component of traceMain-

tainer. It consists of an EventCache that holds a number of
last incoming change events from the event generator, an
OpenActivityCache that holds all partly recognized activi-



ties for the events currently held in the EventCache and a
link update manager that determines the necessary trace-
ability maintenance actions for recognized development ac-
tivities. It depends upon the rule catalog for its operation
(see Section 4).

The rule engine has a single user interface intended for
the normal user. This is the interaction dialog that automati-
cally pops-up in situations where a development activity has
been recognized, but not enough information is available to
carry out the traceability update completely automatically
(see Figure 2). The dialog provides detailed information
about the recognized development activity and the neces-
sary update.

Figure 2. The user interaction dialog is dis-
played in situations where the update cannot
be carried out automatically

The dialog shows two list boxes separating the incoming
and outgoing traceability relations involved in the update
context. Each row in these boxes represents an existing
or potential new traceability relation. The user can decide
to keep (stay is the default and preselected action) or
delete existing relations on the source elements. For the
evolved elements, the user can decide to create or discard
the relation. A decision on the proposed relations without
preselected actions determined is required to be able to
complete the update, while a change of a preselected action
is made possible in other cases but not required.

3 Event Generator
The event generator is created as an add-in to Enterprise

Architect. It observes changes to elements of interest and
captures a number of properties to the changed element.
The types of elements to be observed and their properties
of interest are defined within an accompanying information
model stored in XMI format. The information model can
easily be opened as a regular model in Enterprise Architect
to allow the user to customize the generated events in terms
of observed elements and collected properties.

4 Rule Editor and Rule Catalog
The rule editor is a stand-alone application that is

intended to help in two usage scenarios. First, it validates
an existing rule catalog upon opening it according to
four categories of possible failures. Second, it provides
functionality to edit and create all parts of a rule catalog
whilst also validating the changes. For rules, the update and
the description provided within notifications can be defined
(see Section 2). To support definition, typical values for
each property can be stored in the information model
and provided within a drop-down box in the rule editor.
Each entry made for a property is syntax-checked and all
defined references are checked for their existence within
the alternative. Failures are indicated by colored values (red
means syntax mistake and violet means reference mistake.

5 Status
traceMaintainer provides an extensive set of features for

implementing and maintaining traceability between a broad
spectrum of UML model element types. Its main compo-
nent, the rule engine, has been implemented independent of
a specific modeling tool and supplies a well-defined API.
In this paper, we have described tool-specific extensions for
the Enterprise Architect modeling tool to satisfy the API
and also enhance its existing traceability functionality. Ini-
tial experimental results have been encouraging ([2], [1])
and further industrial case studies are planned.

Since the rules are likely to evolve, we have created
a rule editor for their definition and validation. We are
currently investigating how to semi-automatically define
rules by observing a developer performing change activities
in situ using a rule recorder. We are further investigating
how to handle the undo function within third-party model-
ing tools effectively, whilst still recognizing development
activities accurately.

Acknowledgments The authors would like to thank
Tobias Kuschke, Christian Kittler and Arne Roßmanith for
implementing the prototype.

References
[1] P. Mäder, O. Gotel, and I. Philippow. Enabling automated

traceability maintenance by recognizing development activi-
ties applied to models. In Proceedings of 23rd International
Conference on Automated Software Engineering ASE2008,
L’Aquila, Italy, Sept. 2008.

[2] P. Mäder, O. Gotel, and I. Philippow. Rule-based maintenance
of post-requirements traceability relations. In Proceedings
of 16th International Requirements Engineering Conference
(RE’08), pages 23–32, Barcelona, Spain, Sept. 2008.


