

A Framework for Interlacing Test and Design

Marc Horstmann¹, Eckehard Schnieder¹, Patrick Mäder², Severine Nienaber², Hans-Martin Schulz²
¹Institute for Traffic Safety and Automation Engineering, TU Braunschweig

²EXTESSY AG, Wolfsburg

m.horstmann@tu-bs.de, e.schnieder@tu-bs.de,

p.maeder@extessy.com, s.nienaber@extessy.com, h.schulz@extessy.com

Abstract

This paper presents a test framework which interlaces

the test process with the development process in the

domain of embedded control systems. The framework

shows the following characteristics:

• Strong integration of test and development process by

solving test management issues inside development

tools instead of specialized test management tools

• Test in very early development stages by assuming a

model-based development process where executable

models are available

• Reuse of test sequences at different abstraction levels

and tool flexibility by tool-coupling

The paper demonstrates concept and realisation of the

test framework, which offers a manual but comfortable

test suite derivation where test cases can be archived in

the requirements database and interlinked with the

requirement specification modules. Once the test

sequences are defined, an automatic test instrumentation,

execution and evaluation can be done. The test

instrumentation is flexible, such that the system under test

can be either a model or the realized hardware/software

system.

1. Introduction

The development process of embedded systems within

the domain of traffic engineering is changing. Due to the
complex, distributed and hybrid (continuous/discrete)
system character the development process changes from
traditional development strategies containing informal
textual specification and manual coding techniques to a
model-based and tool-supported development process. It
starts with requirements engineering and leads to
automatic production code generation, which has to be
integrated into its designated electronic environment (e.g.
a microcontroller) and then into the hardware environment
(e.g. a mechanical environment).

Besides constructive quality assurance methods also
the analytical part has to be improved. The main method
of the later case consists in testing; due to the fact that it
can be applied also to very complex systems where other
quality assurance methods do not work, especially as soon
as hardware becomes part of the system under test.

Concerning the degree of automation in testing three
fields can be differentiated:
• Test case derivation
• Test instrumentation, execution and evaluation
• Test process

An automatic model-based test case derivation is still a
matter of scientific concern. Nevertheless there exist some
case studies that have been reported successful in practice
[1], but in general this step is done manually and driven
by human intuition.

For test instrumentation, execution and analysis a
higher degree of automation can be reached. Nevertheless,
a lot of tests are still executed manually. Traditionally, the
test process is separated from the development process
and starts at the point when the first executable system
parts are realized.

In this paper, an approach for a combination of test
process integration and automated test instrumentation,
execution and analysis automation is presented. The test
case derivation is carried out manually, but in a
comfortable manner and integrated into the presented
framework.

The test framework is developed and used as part of
the joint project STEP-X (Structured development process
for automotive applications) [5], [13], which is a
cooperation between the Volkswagen AG and the Center
of transportation at the Technical University of
Braunschweig.

2. Concept for Interlacing model-based
Development and Test

The test framework that is presented in this paper is

characterized by integrating existing concepts and tools
instead of developing new custom solutions [11] [4].

Following this strategy, test management issues are
solved inside development tools instead of using special
test management tools.

To take a maximum advantage of the model-driven
development process, executable models of different
development stages are used for performing tests. Thus,
tests can be executed at very early stages in the
development process.

Assuming a black box view on the different
development models in combination with constant
interface definitions, the test sequences can be reused for
different models of different abstraction levels. E.g. for
user acceptance tests this is possible due to an early
defined user interface that will not change during the
development stages. By using tool coupling the test
framework enables this possibility even if the tools change
between different levels.

2.1 Integration of test and requirements management

Figure 1 shows the role of the requirements

management in the STEP-X development process [3] [8].
Besides forming the requirements specification with its
different views, e.g. user or system specification, the
requirements management connects the specification with
models of different development stages. The benefit of
this backbone is to get a possibility of forward and
backward tracing. E.g. the realization of a certain user
requirement at the functional high level design stage can
be checked.

The test management is integrated into the
requirements management (cf. the right part of Figure 1).
By doing so, the tester gains the same advantages, e.g.
traceability and consistency, as during the development
before. It is possible to navigate from a specific
requirement to the corresponding test sequences or test
suites and vice versa. Consistency beneficiates even more
as test and development simultaneously use the same
documents, e.g. concerning system topology and
interfaces or system parameters.

��
��
��
�
��
��
	

�
��
��
��
��

�����������������������

������

���� ������� !����� "���

#�� � ���������

$���%!����������

���� �� ���� "���

������ "���

&�'���(�� �)*������� ���

�������

���� ����� +��� ,�-�� .�����

#�� � ������

$���%!����� ���

���� �� ��� .�����

.� ����� .�����

/�
	�

�
��
��
��
��

Figure 1: Integration of test management

2.2 Flexible test instrumentation by tool coupling

In traditional software testing following the V-Model,

unit, integration, system and acceptance tests are
performed sequentially dependent on the level of system
development in a bottom-up manner. For example
acceptance tests are performed once, by the time where
hard- and software parts are complete and integrated.

A model-based development process in combination
with tool coupling by co-simulation allows important
advantages for the test process. A test instrumentation that
is done for a certain case tool can be used for several
model combinations. A model combination consists of a
control part model which is the aim of the whole
development and a plant model that is used to take the
environment behavior into account. Figure 2 shows the
different combinations, where control part and plant
model can be modeled with the same tool as the test
instrumentation is done for, but it is also possible that one
part or both are modeled with different tools or exist as
hardware components.

Stimuli, exp.
results

System under
test

Variance
comparison

Control:
Tool A

Plant:
Tool A

Plant:
Tool A

Control:
Tool B

Control:
real system

Plant:
real system

Test
result

Figure 2: Test instrumentation

In case of constant interfaces for different development

levels, e.g. in case that mainly functional abstraction
mechanisms are used, it becomes possible to reuse test
sequences at different abstraction levels. E.g. for user
acceptance tests, where the interfaces are defined early in
the development process this becomes possible.

For coupling different CASE tools the EXITE

(EXtessy Inter Tool Engineering) toolbox by the
EXTESSY AG is used [7]. The client server structure of
EXITE allows an integration of several CASE tools into
the structure which enables developers and testers to be
more or less independent on certain tool manufacturers.
The development process as the test process becomes
robust against changes in the tool chain.

3. Test Purpose and Test Case Identification

Before specifying or generating test suites, it is

necessary to define a test strategy and test purposes. The
test strategy specifies the abstraction levels where tests
will be executed and the different systems under test, e.g.
units or the complete system. The test purpose describes
informally what is to be tested.

After this step, the identification and formalization of
test cases can be done. The presented test framework uses
manual test case derivation since for the kind of systems
in the focused domain it will be always necessary to have
test cases based on expert knowledge. Of course it would
be desirable to have an additional possibility to generate
model-based test cases, which will be one subject of
future work.

3.1 Test purposes for manual test derivation

Since the test framework realizes the test case

derivation manually based on expert knowledge, three
different test purposes are identified:

Specification oriented: The idea is to define at least
one test sequence for each requirement. This sequence(s)
will give two parts of information after execution: Firstly,
whether the treated requirement is existing in the
implementation and secondly, whether it is working for
the test sequence as specified. Of course it can not ensure
an absence of errors for this function. As test is defined by
Myers [9], the general test purpose is to show failures of a
system. In case of performing tests without detecting
failures, the tests enhance the confidence to the system.

Risk oriented: Different subsystems or functions can
be classified and weighted concerning the risk that results
from the subsystems. The test effort will be divided
according to the risk oriented classification of functions.
In difference to the specification oriented test purpose the
risk oriented test purpose is not quantifiable, but it can
direct the test resources.

I/o oriented: Another possibility for the test purpose is
an i/o-oriented test case derivation, where the state space
of combinations is defined as full coverage. As for
systems of the focused domain, the reaction depends on
the systems history, the i/o oriented coverage is weak.
Nevertheless quantifiable information will be given.

An easy way of specification for primary discrete

controlled systems is to use classification trees [2]. This
notation combines a tree structure of system interfaces and
possible states of these interfaces with tables. The test
sequences are textual described and then formalized by
defining the corresponding interface states. Therefore, the
tool CTE XL (Classification-Tree Editor eXtended
Logics) [6] is used, which is developed at
DaimlerChrysler AG.

3.2 Identification and formalization of test cases

It will be assumed for the following that system

requirements are documented as textually described
sequences constrained by timing and performance aspects.
Additionally it is assumed that as part of these
requirements system interfaces and system parameters are
defined in separated documents. Within the STEP-X
project, DOORS by Telelogic is used for requirement
management issues. The specification consists in several
DOORS modules. The upper part of Figure 3 shows the
important modules for the test definition: Functional
descriptions, interfaces and parameters.

The interface module defines possible interface states
and has to be transformed into CTE XL, where the test
case derivation is done. Thus, this kind of test case

derivation can be done at a very early stage within the
development process.

After the test case derivation in CTE XL, the test suite
will be imported into DOORS (cf. Block “Test sequence
transformation CTE Æ DOORS” in Figure 3).

Figure 3: Framework structure for test specification

In DOORS, the test suites can be interlinked with other

modules, e.g. the functional specification (cf. Figure 3).
Thus, one can have a look to the test status of a
requirement by following a certain link and will get
information whether the function is tested or not and if the
test was successful or not.

If the test sequences are stored and interlinked in
DOORS, the test framework offers an automatic
instrumentation for different abstraction levels. For all
levels, a MATLAB m-file is generated (cf. Block “Test
sequence transformation DOORS Æ MATLAB in Figure
3) since the whole test execution and test evaluation is
controlled out of MATLAB/Simulink. Figure 4 shows the
corresponding DOORS export window of the test

framework. The test suite to be instantiated can be defined
by marking single test sequences or a whole test suite.

Figure 4: DOORS – MATLAB export window

4. Test Instantiation and Test Execution

An abstraction level where test sequences are

instrumented, can either be a model or the realized system
with hard- and software components. Figure 5 shows the
abstraction levels for tests in the STEP-X process. For
testing the realized system with its software, electronic
and mechanical components, a test PC is necessary
additionally in order to realize the mapping of stimuli in
the models to real system stimuli. Therefore, a GENIX
Box by add2 is used, where analog, digital and CAN-
Interfaces are available. As real time OS, the xPC toolbox
by the The Mathworks is used.

Figure 5: Test implementation

The generated MATLAB m-file can be used for the

test execution at different abstraction levels, cf. Figure 2
and Figure 5. For layer 3 in Figure 5, a hardware
demonstrator has been realized. The example of use is an
electronic window lift control that is part of the STEP-X
project. Figure 6 shows this configuration.

Figure 6: Electronic window lift demonstrator

5. Test Evaluation

Aim of the test evaluation is to detect weather the

measured output signal matches expectations or not. Thus,
for real systems as focused by the test framework,
differences between these two signals will occur. These
differences can be due to tolerances in timing or state
behavior.

Therefore it is necessary to define these tolerances for
timing and states in the requirement specification. The
survey of remaining within the specified tolerances has to
be automated since otherwise the effort for the test
evaluation would become the bottleneck of the whole test
framework. Besides, the results would depend on the
person who does the evaluation.

A suitable automatic test evaluation should offer to
define these tolerances for timing and amplitude of the
output signal based on the definitions in the requirement
specification. Tolerable are local or global stretching of
values up to the defined tolerance, where e.g. changes in
the chronological order are not allowed.

Ritter et al. [10] present an algorithm that becomes part
of a two step procedure which is presented by Wiesbrock
et al. [12]. This procedure offers local signal stretching by
calculating a difference matrix which is used for a re-
parameterisation of the measured output signal. It allows
shifting each value inside the specified tolerances in order
to fit to the expected signal. After that, a standard
tolerance tube approach is used to compare the equalized
measured output against the expected output.

In STEP-X this procedure is realized in MATLAB.
Especially the performance of the procedure is important
due to an enormous effort that results from the size of the
differential matrix. Therefore an algorithm is used that is

developed for solving Job-Shop-Scheduling problems,
which has shown a very good performance.

Inputs for the algorithm are a matrix of measured and
expected values. Additionally the DOORS ID of the test
case is part of the matrix in order to allow the import of
the test results after test execution and evaluation.

After the evaluation is finished, the results are saved in
a file that can be imported in DOORS in order to set or
update the status of the test case or test suite.

6. Conclusion

This paper presents a test framework, where the test

process is advanced by a strong interlacing of test process
and system development. While the test case derivation is
done manually, the test instrumentation, execution and
evaluation is done automatically.

Synergies for the level of test specification and test
management are given by sharing the same databases and
establishing link structures with the development process.

The test instrumentation and execution allows testing
either models of several tools due to the connection of all
components with a co-simulation middleware, or the real
system with its hard- and software components. If the
interfaces for models of different development stages (e.g.
functional high level design and detailed design) are
constant, test sequences can be reused for different
development stages.

The test evaluation has been automated with a
powerful algorithm that allows analyzing a broad range of
signals.

7. References

[1] Broy, M.; Jonsson, B.; Katoen, J.; Leuker, M.;
Pretschner, A.: Model-based Testing of Reaktive
Systems – A Seminar Volume. To appear in LNCS,
Springer Verlag, Summer 2004

[2] Grochtmann, M. und Grimm, K.: Classification Trees
for Partition Testing. Software Testing, Verification
& Reliability, vol. 3, no. 2, pp. 63 – 82, 1993

[3] Harms, M.; Horstmann, M.; Mutz, M. ; Krömke, C.:
STEP-X: Strukturierter Entwicklungsprozess für
eingebettete Systeme im Automobilbereich.“ Journal
„Automotive Electronics“ 1/03, GWV Fachverlage,
Wiesbaden 2003

[4] Horstmann, M.: Ein Konzept für die Verflechtung
von Entwurf und Test eingebetteter Systeme im
Automobilbereich. In: Prof. Dr.-Ing. E. Schnieder,
Hrsg.: Tagungsband der EKA 2003, S. 215-230, Juni
2003. EKA 2003.

[5] Horstmann, M.; Harms, M.; Mutz, M.; Bikker, G.:
Methodik und Werkzeugkette für einen
modellbasierten Entwicklungsprozess im Automobil-
bereich. Tagung Automatisierungs- und
Assistenzsysteme für Transportmittel, S. 134-153,
VDI-Verlag, Düsseldorf, 2003

[6] Lehmann, E.; Wegener, J.: Test Case Design by
Means of the CTE XL. Proceedings of the 8th
European International Conference on Software
Testing, Analysis & Review (EuroSTAR 2000),
Kopenhagen, Denmark, December 2000

[7] König, S; Bikker, G.: Developing and Implementing
a Framework for CASE Tool Coupling - Object
Orientation upon Tool Level. European Concurrent
Engineering Conference 2000, Leicester, 17.-19.
April 2000

[8] Mutz, M.; Harms, M.; Horstmann, M.; Huhn, M.;
Bikker, G.; Krömke, C.; Lange, K.; Goltz, U.;
Schnieder, E.; Varchmin, J.-U.: Ein durchgehender
modellbasierter Entwicklungsprozess für
elektronische Systeme im Automobil. In: VDI
Gesellschaft Fahrzeug und Verkehrstechnik, Hrsg.:
Elektronik im Kraftfahrzeug, S. 43-76, September
2003. VDI Tagung Elektronik im Kraftfahrzeug, VDI
Verlag GmbH.

[9] Myers, G.: The Art of Software Testing. Wiley and
Sons, 1979

[10] Ritter, C.; Willibald, J.; Sax, E.; Müller-Glaser, K.
D.: Auswertemöglichkeiten von Systemantworten im
Steuergeräteumfeld – ein Überblick. Projektbericht
FZI-ESM-DCB-TN-1-1.0, Karlsruhe, März 2001.

[11] Schnieder, E.:Methoden der Automatisierung.
Vieweg & Sohn Verlagsgesellschaft, Braunschweig-
/Wiesbaden, 1999. ISBN 3-528-06566-4

[12] Wiesbrock, H.; Conrad, M.; Fey, I.; Pohlheim, H.:
Ein neues automatisiertes Auswerteverfahren für
Regressions- und Back-to-Back-Tests eingebetteter
Regelsysteme. Softwaretechnik-Trends, Band 22,
Heft 3, 2002.

[13] www.step-x.de
Homepage of the project STEP-X

