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Abstract. Traceability is demanded within mature development pro-
cesses and offers a wide range of advantages. Nevertheless, there are
deterrents to establishing traceability: it can be painstaking to achieve
initially and then subject to almost instantaneous decay. To be effective,
this is clearly an investment that should be retained. We therefore focus
on reducing the manual effort incurred in performing traceability main-
tenance tasks. We propose an approach to recognize those changes to
structural UML models that impact existing traceability relations and,
based upon this knowledge, we provide a mix of automated and semi-
automated strategies to update these relations. This paper provides tech-
nical details on the update process; it builds upon a previous publication
that details how triggers for these updates can be recognized in an au-
tomated manner. The overall approach is supported by a prototype tool
and empirical results on the effectiveness of tool-supported traceability
maintenance are provided.

Keywords: Automated traceability maintenance; Model-driven engineer-
ing; Change management; Rule-based traceability; Traceability update.

1 Introduction

Establishing traceability on a project can be time consuming. Even with the
support of emerging automated techniques there is still substantive manual work
involved [1]. Providing for traceability is intended to support change management
and many other software development tasks but, to leverage this investment, it
is necessary to have an accurate and ready to use set of traceability relations.
Traceability needs to be maintained while project artifacts are evolving.

By traceability maintenance, we refer to the modification and/or enhance-
ment of existing traceability relations after changes to artifacts to ensure their
continued correctness and accuracy. We highlighted a general approach for au-
tomated traceability maintenance in a previous paper [2]. The approach targets
model-driven software development using UML and comprises two key tasks:



(i) recognizing changes to models in terms of the broader development activity
being undertaken; and then (ii) updating the impacted traceability relations to
restore the traceability. The technical details underlying the automated recogni-
tion of development activities have been described in an earlier paper [3]. In this
companion paper, we focus on the technical details associated with traceability
upkeep and explain how the necessary updates are implemented.

The paper is organized as follows. In Section 2, we provide high-level details
about our approach and describe the context of software development for which it
has been developed initially. In Section 3, we describe our process for updating
existing traceability relations after the recognition of development activities.
We also describe how necessary updates can be propagated. In Section 4, we
discuss our initial validation through an experiment that compares the effort and
quality associated with tool-supported traceability maintenance, based upon the
approach described, versus manual efforts. We end the paper with a summary
of related and future work.

2 Motivation and Scope

Within this section, we discuss the problem of maintaining traceability relations
and present an overview of our solution to this typically manual task. We first
outline the context that we work within.

2.1 Model-driven Software Development

With model-driven software development using the UML, a variable number of
abstraction layers (i.e., models) can be created to document a problem and its
solution, from the initial requirements through to the final implementation [4].
As the elements of these models describe the same system, there are benefits in
establishing explicit traceability relations between models to handle change. Few
industrial projects implement traceability in this fashion though, due to the per-
ceived and actual costs, and struggle to find the right balance as project artifacts
evolve [5]. Traceability maintenance can be a time consuming proposition.

2.2 Approach and Tool Support

Our approach is founded upon the following assumptions: (1) while evolving any
kind of UML model, it is possible to capture the elementary change actions and
salient information regarding the properties of the changed element; (2) one can
understand the intention of these elementary change actions within the context
of a chain of related change actions on an element and so determine the wider
development activity; and (3) knowledge of an intentional development activity
provides the information necessary for pre-existing traceability relations to be
updated following the changes. Our approach therefore records all the changes
to model elements and uses this information to find a match within a set of



predefined patterns of recurring development activities. A match will instigate
the requisite traceability update actions.

Changes to a UML model can be classified into three elementary types:
adding new elements, deleting elements and modifying existing elements. All
elementary changes that are not recognized as part of a wider development ac-
tivity are handled as new additions or deleted elements of the model. For new
elements, we support the developer in the creation of traceability relations. For
deleted elements, we discard associated traceability relations if necessary. To
restore overall traceability within a set of interrelated models, we support the
propagation of required changes to models.

Currently, the approach is restricted to the analysis of changes to those mod-
els described via structural UML diagrams (e.g., class, object, composite struc-
ture, package and component diagrams). We focus on UML models as these are
the de facto standard for model-based software development and a wide range of
existing CASE tool support is provided. Furthermore, UML offers the possibility
of capturing the full range of software development artifact via its diagrams and
offers basic support for traceability relations as part of its meta-model [6]. We
are currently investigating how to extend the approach to support the behav-
ioral diagrams of the UML and also to handle additional types of model. More
details are described in earlier papers ([2], [3]) and the approach is supported by
a prototype tool called traceMAINTAINER [7].

3 Traceability Update Process

We restrict our focus to post-requirements traceability [8] and hence to the
consequent modeling activities and artifacts of the software development lifecy-
cle. The development process therefore consists of activities that incrementally
transform a requirements specification into the final implementation (e.g., the
platform specific model or source code) in a forward engineering manner. Each
of these activities is applied to or influenced by various input artifacts and cre-
ates new or improved output artifacts. Creating an explicit traceability relation
between these artifacts can capture these dependencies. We represent our trace-
ability relations as stereotyped dependency relationships, as defined by the UML
meta-model. The direction of a dependency relation points, by default, from the
dependent model element towards the independent model element. This direc-
tionality is intended to convey semantics and, in our case, to assist traceability
update and change propagation, but does not prevent bi-directional use or nav-
igation of the traceability relation itself.

3.1 Types of Model Changes

Focusing on post-requirements traceability relations and restricting directional-
ity, requirements can be treated as sinks of a directed acyclic graph, sourced
by elements of implementation, test and so on. The nodes of this graph rep-
resent related elements in different models and the arcs represent traceability



relations. Each related requirement spans such a tree. Changes to models that
impact traceability are the possible changes to the traceability graph and are
combinations of the elementary changes given in Section 2.2. In this section, we
describe the types of change we distinguish at the model level and explain their
relation to the change of the traceability graph. Figure 1 depicts all the change
types and their traceability implications. Figure 2 depicts the underlying graph
that is the subject of the examples in the sub-sections below.
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Fig. 1. Different change types with a focus on the necessary traceability updates

Adding a New Element This change enhances a model by adding a new
element (see Figure 1(a)). While creating new traceability relations on the el-
ement, new nodes will be added to the traceability graphs of the associated
requirements.

Recognition of change: Each change to a model is retained in a buffer of our
traceMAINTAINER tool until the wider development activity has been identi-
fied. If we have not been able to assign the creation of a new model element
(i.e., ADD event) to a wider development activity, we treat the change as an
enhancement of the model. This means that the element is a new additional
part of the model and may require the creation of a new traceability relation.
The necessity to establish new traceability relations depends upon the project’s
traceability information model.

Required traceability update: After adding a new element, it might be nec-
essary to relate the element to independent elements that are the reason for
the addition. The traceability information model specifies what elements are al-
lowed/intended to be linked for a project, so it is possible to suggest or even
require the creation of one or more traceability relations on the new element. In
cases of ambiguity, we add a tag to such elements for the developer to exam-
ine when convenient. On exiting a CASE tool, a dialog is provided to alert the
user to any tagged elements that are yet to be connected within the traceability
graph. The dialog provides possible counterparts for new traceability relations



on the element according to the traceability information model. Also, the last
traced element of that type will be offered, as it is common that several proximal
changes belong to the implementation of the same new requirement. Recently
changed elements are more highly ranked and we are currently investigating the
possibility of using existing information retrieval techniques to provide a better
ranking of candidate relations to aid this task.

Impact on existing traceability: This change type has no impact on the ex-
isting traceability relations but, if new elements are not related, the results of
impact analysis and change propagation are likely to be wrong.
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Fig. 2. Example of two overlapping traceability graphs implementing two requirements

Deleting an Element This change arises when an element is removed from a
model without being replaced (see Figure 1(b)). While removing an element, its
relations will also be deleted, so nodes from the traceability graphs are removed.

Recognition of change: This is similar to ADD events. For each autonomous
DEL event that is removed from the traceMAINTAINER buffer we assume that
the intention behind the activity is to remove the element from the model.

Required traceability update: If an element has been removed it is neces-
sary to remove its traceability relations and examine the resulting impact. Using
traceMAINTAINER, we store the traceability relations in an additional reposi-
tory with the advantage that we are able to find out about an element’s relations
even after its deletion, but with the necessity to delete these inconsistent rela-
tions explicitly.

Impact on existing traceability: The deletion of inconsistent traceability rela-
tions is sufficient for relations to independent elements. For incoming links from
dependent elements, however, it is necessary to check whether these elements
are still valid and required or not. All these traceability relations will be kept
and receive a suspect tag and the deletion of the model element will be added as
the rationale for this status. Developers need to make decisions on suspect tags.

Replacing an Element An element may be replaced by another element for
a number of reasons (see Figure 1(c)). It can be refined or generalized (e.g.,



replacing an association by an aggregation or composition and vice versa, or
replacing a class by an interface and vice versa). The element can also be con-
verted into a different type (e.g., converting a class into a component and vice
versa). Replacing an element requires restoring all former traceability relations
on the new element. This means that the nodes of the traceability graphs have
to be replaced.

Recognition of change: The replacement of an element is a wider development
activity comprised of several elementary changes. At a minimum, the deletion
of the old element and addition of the replacing element are present. We use
predefined rules and a rule engine within traceMAINTAINER to recognize such
development activities, as described in an earlier paper [3].

Required traceability update: In general, the update after a replacement
activity requires the restoration of all hanging traceability relations that were
related to the impacted model element on the newly created replacing element.
Restoration here means to delete all hanging relations of the old element and to
recreate them on the new element.

Impact on existing traceability: The replacement element may have an im-
pact on the elements of dependent models requiring an update. Our change
propagation mechanism is described in Section 3.2.

Spitting or Merging Elements An element may be split into two or more
elements and two or more elements may be merged into one resulting element
(see Figures 1(d) and 1(e)). Examples for split and merge are the extraction
of a class’s attribute into its own class and vice versa, or the refinement of an
unspecified association into two unidirectional ones and vice versa. The splitting
or merging of elements requires the duplication of existing traceability relations
to these elements. This leads also to the split or merge of nodes within the
traceability graph.

Recognition of change: As with replacing an element, split and merge are
wider development activities comprised of several elementary changes. We pro-
vide rules to recognize these development activities within the rule catalog of
traceMAINTAINER.

Required traceability update: As for the replacement of elements, there are
many ways within a typical CASE tool to get to the same result. This variety
is important for split activities since traceability update may require copying all
the traceability relations that still exist on the modified element to all additional
new elements, with or without the removal of the original. The situation is similar
for merging. One of the parts might be modified into the resulting whole or all
parts deleted prior to creating a new whole. The traceability update requires
consolidation of all traceability relations of all the parts on to the resulting
whole.

Impact on existing traceability: The impact is similar to replacing an element.
The split or merge may have an impact on related elements of dependent models
and require change propagation (Section 3.2).



Moving an Element An element or one of its parts may be moved into another
context, so into a different element (see Figure 1(f)). Examples would be moving
a class into another package or moving an attribute into a different class. Chang-
ing the context of an element may require copying or moving the traceability
relations on the element’s parent to the new parent. This change is similar to
adding/deleting a node to the traceability graph.

Recognition of change: As discussed for replacing, splitting and merging, the
moving of an element is also a wider development activity and can be recognized
by predefined rules within traceMAINTAINER.

Required traceability update: It is possible to perform this change type in
different ways. The element might be dragged and dropped in a project browser
from one element to another. In this case, no update of traceability relations on
the element itself is necessary. The element may also be deleted and recreated
at the new location. In this case, it is necessary to restore all the traceability
relations of the deleted element on the newly created element. The more chal-
lenging aspect of the traceability update after moving activities such as these is
that of changing the context. It might be the case that the moved element was
part of a related element. In such a case, it is likely that these relation(s) are
impacted by the move, so we provide a dialog to the developer that shows all
the traceability relations on the former parent element (old context) and offers
(for each relation) to delete it from the old parent and also to create it on the
new parent. This approach offers the developer the possibility of either leaving,
copying or moving each traceability relation.

Impact on existing traceability: This change type requires propagation, as
per Section 3.2.

3.2 Change Propagation

The main purpose of our work is to maintain the ongoing relevance of traceabil-
ity relations once they have been established and to reduce the manual effort
required to do this. It is for this reason that we distinguish between incoming
and outgoing relations on a model element. An outgoing relation points towards
an independent element; an incoming relation relates from a dependent element.
We use this information specifically for the propagation of changes between dif-
ferent models and/or different levels of abstraction. The related elements in such
a context usually have an ancestor/successor type of association. If the ancestor
element changes, it is likely that this has an impact on related dependent ele-
ments, but it should have no impact on the independent related elements. Rather
than make assumptions, the developer may be alerted to re-examine such im-
pact. We therefore propagate changes, by default, only on incoming traceability
relations to dependent elements. Nevertheless, the developer may also choose
to propagate only to independent elements or, in certain cases, to all related
elements. The possiblity to propagate changes also to independent elements can
be helpful in situations where a model is changed without changing the more
abstract model first so that both models stay aligned.



By propagating changes, we mean that we set all incoming and/or outgoing
traceability relations of a changed model element to a suspect status and require
the developer to manually inspect and, if necessary, resolve inconsistencies. We
propagate all changes to an element, even those that did not take part in a
wider development activity. This makes sense in a forward engineering process
where changes will be propagated to subsequent elements whose creation was
influenced by the changed element. To help resolve possible inconsistencies, we
capture the recognized change type as a tag on the traceability relation while
setting its status to suspect, as mentioned earlier.

We provide a mechanism to resolve relations whose state has been set to sus-
pect. If an element has been modified that has outgoing relations with suspect
status then we propose to remove that state after the change. This mechanism
reflects our assumption that a developer working on a model element will usu-
ally resolve all open issues and ensure consistency to the independent model.
Empirical studies are required to examine developers’ activities in more detail
to ensure the approach is reflective of practical needs.

4 Validation

In this section, we outline an experiment undertaken to explore the following
research questions regarding traceability upkeep. Note that validation of the
change recognition process has been described elsewhere [3].

Research Question 1 Does use of the traceMAINTAINER prototype (a
tool that implements the approach and updates traceability relations using au-
tomated and semi-automated strategies [7]) reduce the manual effort necessary
for maintaining traceability relations? While no manual effort would be a desir-
able target, we seek evidence of a reduction greater than the time necessary to
configure and learn how to interact with traceMAINTAINER to make its use
worthwhile.

Measure: The manual effort for traceability maintenance refers to the time
the developer spends on this task. It comprises: thinking about the maintenance
task (including recognizing it), navigating within the models and performing the
required changes. Measuring the time taken for these sub-tasks is problematic
given the lack of access to thought processes and the inter-weaved nature of
many tasks, so attempting to gain this data would interfere with the task itself.
As an indicator of effort, we record the number of performed changes to the set of
traceability relations, along with time spent responding to traceMAINTAINER
dialogs.

Research Question 2 Do the traceability updates performed by trace-
MAINTAINER result in a set of traceability relations of comparable quality to
those when maintained purely manually?

Measure: Determining the quality of a set of traceability relations depends
upon having an agreed baseline. Three types of changes to the traceability re-
lations are then distinguished: changes that have been performed correctly ∆c

(according to the baseline); changes that have been performed incorrectly ∆i;



and changes that have not been performed ∆m. To be able to compare the qual-
ity and number of changes amongst subjects we compute two measures that are
commonly used to evaluate approaches dealing with uncertainty in recognition
processes, precision and recall. Precision tells us about the quality of the per-
formed changes, QP = ∆c/(∆c + ∆i) while recall tells us about the number of
necessary changes performed, QR = ∆c/(∆c +∆m).

4.1 Experimental Set-up

Hypothesis Formulation: Our experiment has one independent variable (the use
of traceMAINTAINER) and two treatments (tM, no−tM). It has five dependent
variables, on which treatments are compared:

Cm Number of manually performed changes to the set of traceability relations.
Ca Number of automated changes to the link-set.
CUI Number of user interactions with traceMAINTAINER.
QP Precision of performed changes (correct changes/(correct+incorrect changes)).
QR Recall of necessary changes (correct changes/(correct+missing changes)).

Null hypotheses:
Manual changes H0 : Cm(tM) ≥ Cm(no− tM)
Precision H0 : QP (tM) = QP (no− tM)
Recall H0 : QR(tM) = QR(no− tM)

Development Project: The experiment was conducted on the UML models for
a mail-order system, a completed project implemented in Java by the first au-
thor of this paper. The project artifacts include UML models on three levels
of abstraction: requirements, design and implementation. The models provide
information to a level of detail that one would expect at the end of the design
phase, including use case diagrams, interaction diagrams and class diagrams.
The model elements are listed in Table 1(a). The set of traceability relations for
this project (referred to as the project link-set) relates the three models and con-
sists of 214 traceability relations. The initial linking was undertaken according to
a traceability information model for the project. This states that only relations
between requirements/analysis and analysis/design are valid (i.e., no intra model
relations and no requirements/design). The relations are always directed from
the dependent to independent model. Use cases and classes have to be related
by at least one relation. Attributes, methods, components and packages can be
related to any other element as long as the rules above are followed.

Modeling Tasks: Three maintenance tasks were to be performed on these models
in a fixed order, adding new features of practical value that would impact large
parts of the system. Although the underlying source code was to be made avail-
able within the implementation model, the tasks only required changes to the
analysis and design models. It was estimated that it would take 2 to 3 hours to
complete all the tasks. Subjects were permitted to perform the tasks according
to their ideas and experiences to capture a realistic spread of different solutions
to the same problem. This means that the solutions are not comparable per se.



Table 1. Development project and subject information

(a) Project models and elements

RQs Analysis Design

Use case diagrams 3
Class diagrams 1 6 6
Package diagrams 1 1
Activity diagrams 7
State charts 3
Sequence diagrams 5

Package 5 5
Class 41 63
Attribute 73 150
Method 124 280

(b) Prior experience of subjects

Mean SD

Programming [years] 11,79 7,58
Languages [count] 4,06 1,70
Projects [count] 2,47 1,29
Projects [days] 448,88 397,20
UML [1-4] 2,80 0,91
CASE tools [1-4] 3,16 0,85
Sparx EA [1-4] 2,81 0,69
Traceability [1-4] 2,05 0,75

(Scale [1-4] – 1 is low and 4 is high)

The tasks comprised: (1) Enhance the system’s functionality to distinguish
private and business customers and to handle different properties for them. En-
hance it also to handle foreign suppliers (including currencies and taxes). (2)
Convert two parts of the system into separate components. (3)Enhance the func-
tionality to categorize different products.

Subjects: The subjects comprised 16 computer science students with a wide range
of experience in UML and model-based software engineering. All the students
were taking a course on software quality and were either in the 4th or 5th year
of their diploma (Masters comparable). The subjects were partitioned into two
groups of 8 (tM and no− tM), to equally distribute expertise based upon prior
experience (see Table 1(b)).

Experimental Procedure:

1. All subjects completed a questionnaire to capture their background and ex-
perience. The answers were used to divide the subjects into two groups.

2. All subjects were asked to install the CASE tool to be used (Sparx Enterprise
Architect) and to follow a tutorial one week prior to the experiment.

3. All subjects completed a second questionnaire to capture the effort they
spent on learning the CASE tool.

4. All subjects spent 30 minutes on a lesson explaining the general structure
of the project’s UML models and the purpose of the system. The subjects
were introduced to the advantages and problems of traceability, the project’s
traceability information model and how to maintain traceability relations
manually within the CASE tool. The subjects of the tM group also received
an introduction to the purpose and required responses to requests for user
interactions when using traceMAINTAINER.

5. All subjects received the description of the three tasks along with a question-
naire that would be used to gather information about the work completed
on each task. Only the subjects of the no−tM group were asked to maintain
the traceability relations along with undertaking the modeling activities.



6. After 120 minutes, the subjects of the tM group were asked to stop the
modeling work and to manually maintain the traceability relations.

7. After 150 minutes, all the subjects stopped work.
8. Each subject participated in a short final interview to gather data on the

perceived usefulness of traceability to the tasks, the problems they experi-
enced with traceability maintenance and suggestions they had on improving
tool support for traceability.

Data Gathering: Data were gathered via the three questionnaires, as described
above. For both groups, a log file was created by traceMAINTAINER containing
all the elementary changes performed by the subject, all changes to the link-set
and information about how often the subject navigated the models using trace-
ability relations. For the tM group, a log of all recognized development activities,
the user decisions on interactions and all automatically performed traceability
updates was also created. The models of all the subjects were available for anal-
ysis and the participants of the tM group were asked to save their model before
the 30 minute manual traceability maintenance period.

4.2 Results

Univariate analyses of the dependent variables were performed to test the hy-
potheses both individually for each task and across all tasks. For all dependent
variables Cm, Ca, CUI , QP and QR, two-sample t-tests were performed. The
level of significance for the hypotheses tests was set to α = 0.05. We provide
p-values in the t-test columns of Table 2(a) and 2(b). We had to exclude one
subject from each group from the analysis, because they did not provide a min-
imal solution to each modelling task. This precondition was required in order to
compare results between all subjects.

4.3 Discussion

Research Question 1 When looking at the number of manual changes Cm

to the link-set over the three tasks, the tM group performed far fewer changes
(82%) than the no − tM group (see Table 2(a)). This difference is statisti-
cally significant. However, it is evident that the no− tM group performed only
half as many changes (36.3) than the tM group’s combined total of manual
and automated changes (6.6+59.6=66.2). There are two reasons for this. First,
traceMAINTAINER recognizes small incremental change activities and updates
traceability relations immediately (in the background) after recognition. This
means that the link-set reflects each detour of the developer, in contrast to man-
ual maintenance where the update is typically performed after completing the
whole task, resulting in fewer changes. Second, manual maintainers often chose
to perform only the minimum required changes to comply with the traceability
information model.

The time to undertake a manual change could not be measured precisely
because it is not clear when the developer starts to think about a change task.



Table 2. Descriptive statistics

(a) Change actions and interactions

Task Var Treat Mean SD % diff t-test

All
Cm

no-tM 36.3 12.8
-82% 0.00

tM 6.6 3.8
Ca tM 59.6 34.7
UI tM 9.0 4.1

1
Cm

no-tM 18.6 9.5
-87% 0.00

tM 2.4 1.8
Ca tM 36.2 23.9
UI tM 2.0 2.0

2
Cm

no-tM 7.7 4.9
-90% 0.01

tM 0.8 1.8
Ca tM 13.0 3.3
UI tM 6.2 4.9

3
Cm

no-tM 10.0 4.7
-66% 0.04

tM 3.4 4.7
Ca tM 12.4 14
UI tM 0.8 0.8

(b) Precision and recall of changes

Task Var Treat Mean SD % diff t-test

All
QP

no-tM 79.5 25.7
21% 0.19

tM 95.9 4.3

QR
no-tM 71.3 27.6

11% 0.61
tM 78.8 19.0

1
QP

no-tM 78.9 36.5
21% 0.34

tM 95.7 6.0

QR
no-tM 78.0 36.3

-6% 0.82
tM 73.3 32.7

2
QP

no-tM 83.3 31.0
19% 0.29

tM 98.9 2.5

QR
no-tM 59.5 35.3

51% 0.1
tM 90.0 14.1

3
QP

no-tM 81.6 37.5
17% 0.44

tM 95.6 6.5

QR
no-tM 76.2 35.8

-11% 0.67
tM 67.8 27.3

To estimate this indirectly, we counted the manually created relations, manually
deleted relations and user interactions. Based upon several measurements with
different subjects’ data, we correlated the comparable effort of the three direct
measures as follows: Tcreate ≈ 2 ∗ Tdelete ≈ 2 ∗ TUI . Using this, we compared
no-tM (Tcreate + 0.5 ∗ Tdelete) and tM (Tcreate + 0.5 ∗ Tdelete + 0.5 ∗ TUI) to gain
an approximation of the saved effort by using our approach, as shown in Table 3.

Table 3. Manual effort of the tM group, compared with the non− tM group

Task All 1 2 3

Approx. effort tM -71% -82% -48% -67%

Research Question 2 The values of QP and QR, information about the pre-
cision and recall of changes to the link-set (see Table 2(b)), show that the tM
group reached a value of over 95% precision for all tasks, with a low standard
deviation, 21% higher than the value for the no − tM group. Among all the
changes performed by traceMAINTAINER we found no incorrect ones; all the
incorrect changes within the tM group were manually performed changes. The
values for recall are lower than those for precision and, except for Task 2, compa-
rable between both groups. Values of recall lower than 100% indicate that more
changes to the link-set would have been necessary. This means that the approach
performs updates with high quality (high precision), but does not perform all



the necessary updates. However, any differences between the two groups for both
measures are not statistically significant. The quality of the changes performed
by both groups is comparable.

4.4 Threats to Validity

External Validity: From a task perspective, the reported experiment is realistic.
We had young professionals working on a real project, using commercial tools
and implementing demanding tasks. Nevertheless, it is hard to draw conclusions
to a wider population without more studies. The results reflect more a tendency
that shows the potential of our approach. There are threats associated with
the short time the subjects spent on the experiment given the task complexity.
However, we did not want to set trivial tasks with obvious changes. A high-level
task description enabled there to be a variety of ways to solve the problem, but
demanded effort to analyze and evaluate the data (55k lines of log messages and
16 different models). Without sophisticated techniques, it would be complicated
to run an experiment lasting much longer.

Internal Validity: Internal validity is concerned with establishing a causal rela-
tionship, here between the use of traceMAINTAINER and the number of manual
changes to the link-set. Subjects were randomly assigned to the groups to balance
expertise, but in order to have comparable results among participants we had
to exclude two subjects from the experiment since they did not solve the mod-
eling tasks sufficiently. The potential influence of the facilitators was addressed
by providing an initial briefing and task description in written form only. The
difference in the material between groups was marginal, the addition being how
to react on user interaction for the tM group. None of the subjects had any prior
knowledge about the approach nor did they know the experimental goals.

Construct Validity: Construct validity refers to having established correct oper-
ational measures for the constructs being studied. To investigate the effect of our
approach on the effort for maintaining traceability relations after the evolution
of related UML models it is necessary to use the UML as intended. The UML
offers an open set of description techniques with many ways to apply them.
In this experiment, we used six types of diagram at different levels of detail,
our subjects had state-of-the-art education in UML development and we used
a widely distributed CASE tool. From the debriefing interview, we learned that
almost all the subjects felt immediately familiar with the tool after their prior
tutorial. The examination of the resulting models showed that, except for two
cases (explained above), all the subjects were able to edit and enhance the UML
models in a manner comparable to industrial practice. To investigate the qual-
ity of changes to the link-set, the main problem with comparing traceability is
the lack of an agreed standard. We therefore provided a traceability information
model to give guidance on how to establish traceability for the project. We did
the initial creation of traceability relations according to the model and required
our subjects to do likewise. In order to gain comparable results, we made further
restrictions as to the minimal number and direction of relations (see Section 4.1).



5 Related Work

The goal of our approach is to support the maintenance of already established
traceability relations. We are not concerned with creating an initial set of rela-
tions, which is mostly the domain of techniques based on information retrieval
and data mining, and are concerned more with incremental additions to an evolv-
ing set. There is related work on maintaining traceability relations, supporting
inconsistency management and change propagation between models.

Maletic et al. [9] describe an XML-based approach to support the evolution of
traceability relations between models. The authors describe a traceability graph
and its representation in XML, independent of specific models or tools. They
discuss the issue of evolution and propose to evolve traceability along with the
models by detecting syntactic changes at the same level and type as the relations.
However, the authors do not discuss how to detect these changes in depth nor
how to update the impacted traceability relations.

Murta et al. [10] describe an approach called ArchTrace that supports the
evolution of traceability relations between architecture and implementation. The
use of xADL for the description of architectures and Subversion for the versioning
of source code is required. The authors trigger a set of eight policies on com-
mitting a new version of an artifact. These policies mostly ensure the update
of existing traceability relations on artifacts to new versions within the version
control system and further restrict the creation of new relations on old artifacts.
The authors do not discuss the recognition of structural changes to supported
models nor how to update relations in this case.

Mens et al. [11] describe an extension to the UML meta-model to support
the versioning and evolution of UML models. The authors classify possible in-
consistencies of UML design models and provide rules to detect and resolve
these. They transform the models into a supported format, apply their rules
and suggest model refactorings based on the results. While the authors discuss
the necessity for traceability management and change propagation while UML
models are evolving, they provide no support for this.

Cleland-Huang et al. [12] present an approach called event-based traceability
(EBT). The authors link requirements and other artifacts of the development
process through publish-subscribe relationships. Changes to requirements are
categorized by seven kinds and events are raised according to kind. Events are
published to an event server that sends notifications about the change to sub-
scribers. Change is propagated through sending messages to stakeholders. The
notification contains information to support the update process of the dependent
artifacts. This facilitates manual maintenance. The EBT approach is similar to
our approach, though the authors mainly focus on requirements models and do
not discuss how to detect and resolve changes to additional UML models.

Olsson and Grundy [13] describe an approach where they extract key infor-
mation from different artifacts (requirements specifications, use cases and tests)
into abstracted representational models. The developer can then create explicit
relations between the abstract elements. Some implicit relations can be defined
automatically (e.g., consistently named users within different artifacts). Through



this mechanism, changes can be propagated. Some changes can be resolved auto-
matically (e.g., changing the name of a user). For others, developers are informed
so they can take action. Like Olsson and Grundy, we also propagate the change
of a traced model element and maintain the traceability relations of evolving
model elements, in some cases automatically and in others with limited devel-
oper interaction. In contrast, we do not need to extract the data from the models
first and provide the propagated information about change within the model.

Grundy et al. [14] review existing approaches to handle inconsistencies, be-
tween analysis, design and implementation specifications. They also outline re-
quirements for effective inconsistency management and provide exemplars to
demonstrate and evaluate their approach. We tried to follow their requirements
with our approach, so the necessity to propagate changes immediately as they
occur and mechanisms to inform the developer about inconsistencies.

Traceability is supported by many commercial requirements management
tools, enabling the tracing of requirements to other artifacts in the software
development life cycle. One example, IBM’s RequisitePro, allows developers to
relate requirements kept within the tool to other tools in the product suite, such
as Rational Software Modeler. While these tools support UML explicitly, there
is limited support for the automated creation or maintenance of traceability
relations at fine-grain levels. To integrate the approach of this paper, it would
be necessary to write a tool-specific adapter to generate the necessary events,
and to be able to create and delete the traceability relations. We have found this
to take from several days to two weeks based on the particular tool.

6 Conclusions and Future Work

This paper addresses the problem of traceability decay by presenting an approach
for the maintenance of traceability relations. The approach is currently limited
in scope such that it focuses on restoring traceability following changes to related
elements within structural UML models while undergoing model-driven software
development. The paper provides a set of potential change types and described
the necessary update to existing traceability relations that each type demands.
The identification of these change types becomes possible by applying devel-
opment activity recognition rules to elementary change events captured while
working within a CASE tool [3] and the approach is supported by a prototype
tool called traceMAINTAINER [7].

By recognizing each elementary change to a model, it is much easier to solve
small incremental problems associated with maintaining traceability. Through
our rules and identified change types, this is what we do and we achieve encourag-
ing results. We have conducted preliminary studies to examine the effectiveness
of the traceability update process in practice, in terms of effort saved and qual-
ity of the end results. We are currently starting a larger longitudinal industrial
case study to evaluate our work further. Within that study we plan to gain
more statistical data on the cost/benefit trade-off of the approach for practical
application.
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