
traceMAINTAINER – Tool Demonstration

Patrick Mäder1, Orlena Gotel2, and Ilka Philippow1

1 Department of Software Systems
Ilmenau Technical University, Germany

patrick.maeder|ilka.philippow@tu-ilmenau.de
2 Department of Computer Science

Pace University, New York, USA
ogotel@pace.edu

Abstract. This paper outlines a proposed demonstration that will pre-
sent the core functionality of traceMAINTAINER, a prototype tool that
enables the semi-automated maintenance of traceability relations held
between different models of software systems expressed in UML. The
demonstration will cover: how traceMAINTAINER integrates with UML
modeling tools, such as Enterprise Architect; how traceability updates
are handled based upon the recognition of development activities; what
happens when decisions about a traceability update cannot be made fully
automatically; and how to tailor the rules that guide the traceability
maintenance process.

1 Introduction

traceMAINTAINER is a prototype tool that enables the semi-automated main-
tenance of traceability relations held between different models of software sys-
tems expressed in UML ([1], [2]). The approach analyses changes undertaken to
structural UML models while working within a CASE tool that supports UML
modeling. Change events are captured and sequences of events are sought that
correspond to predefined rules. These rules represent the various ways in which
recurring development activities can be undertaken and directives to update
the impacted traceability relations once identified. This paper is provided as a
companion to the architectural description of traceMAINTAINER provided in
[3].

2 Integration with Case Tools

traceMAINTAINER is designed to work with traditional UML modeling tools
to expand their support for traceability. The demonstration will begin by il-
lustrating traceMAINTAINER’s integration with Enterprise Architect and by
explaining how such integration can be extended to other UML modeling tools.
The integration relies upon two specific components: an event generator that
captures changes to supported model elements and a traceSTORE that extends



the traceability functionality of the base CASE tool. traceSTORE holds trace-
ability relations in an additional class model within the development model and
we will discuss the benefits of this realization over the vanilla traceability func-
tionality (of Enterprise Architect in this case). We will then create a small UML
model for demonstration purposes. This will involve creating a use case model
with two use cases, relating these to elements of a design model, and demon-
strating traceSTORE’s ability to show and navigate the traceability relations
in both models. We will also emphasize the role of the indicators that we have
introduced to recognize the existing traceability relations on an element and
their count. We will further explain the structure of the element references and
relations while creating the example model.

3 Recognizing Development Activities that Impact
Traceability

In this part of the demonstration, we will show how traceMAINTAINER is used
in the context of software development. Expanding the above example, we will
show how an analysis model may need to be changed based upon a change
request relating to a use case. We will use the development activity of extracting
an attribute into its own class to discuss the functionality resulting from this
change request and the use of traceMAINTAINER to account for it. We will then
provide a step-by-step walkthrough as to the tasks undertaken and the response
of traceMAINTAINER to automatically maintain the traceability. During these
activities, we will show the rule engine status window (see Figure 1) to explain
how the development activities are recognized by traceMAINTAINER. We will
also explain how the traceability relations are updated after recognizing the
development activity and the kind of feedback the user receives.

4 Semi-automated Traceability Maintenance

In the preceding parts of the demonstration, we will have presented the use of
traceMAINTAINER in a context were no user interaction was necessary (au-
tomated traceability maintenance). Nevertheless, while development activities
can be recognized by traceMAINTAINER, it is not always possible to make a
definitive update of traceability relations. In the next part of the demonstration,
we will present an example according to Figure 2 in which user interaction is re-
quired. After recognizing the development activity, traceMAINTAINER presents
the user with a dialog that lists all the existing and potentially new traceability
relations involved in the activity. The user is required to decide how to handle
certain relations. We will explain when there is the necessity for user interac-
tion, as well as the reason for the different alternatives presented. After choosing
the preferred alternative, we will show how the traceability relations then get
updated (as per the previous section).



Fig. 1. Before performing the last change of the development activity, the traceMAIN-
TAINER status window shows that the correct rule has been instantiated as an Ope-
nActivity and that all already performed changes have been correctly assigned to it.
The remaining mask is comparable and requires creating an association between both
classes involved in the development activity.

5 Changing Traceability Maintenance Rules

The current rule catalog used by traceMAINTAINER has been in use for about
one year in different experiments and by industry partners. During this period
it has been stable. However, it is unlikely that this set of rules is fully com-
plete and correct. Furthermore, there are development activities that may be
carried out in different ways depending on the domain of the project and the
pre-disposition of the developers. It is therefore desirable to be able to customize
the existing rules and to support the traceability of new model elements. In this
part of the demonstration, we will present the underlying rule catalog of trace-
MAINTAINER. We will describe how these rules were derived and function. We
will also illustrate how they are stored and describe their internal structure. We
will further create a new rule and, using this example, discuss the concept of
properties, masks, alternatives and traceability updates (all key concepts under-
lying the traceability maintenance process supported by traceMAINTAINER).
We will demonstrate different ways to define properties and explain how they
help in creating good rules. Finally, we will highlight the process for validating
new or changed rules.

6 Status

traceMAINTAINER provides an extensive set of features for maintaining trace-
ability between a broad spectrum of UML model element types. Results show
that the approach is capable of reducing the effort (and so the cost) of maintain-
ing traceability quite dramatically and at quality levels comparable to manual



Fig. 2. traceMAINTAINER dialog that informs the user about a recognized develop-
ment activity and requires a decision to be made between several options in those cases
where the traceability maintenance cannot be determined automatically.

maintenance. The approach is intended as a complement to those approaches
that initially create traceability relations using either manual or automated
techniques. The reader is directed to a companion publication for a detailed
architectural description on traceMAINTAINER [3].

Acknowledgments The authors would like to thank Tobias Kuschke, Christian
Kittler and Arne Roßmanith for implementing the traceMAINTAINER proto-
type.

References

1. Mäder, P., Gotel, O., Philippow, I.: Rule-based maintenance of post-requirements
traceability relations. In: Proc. 16th Int’l Requirements Eng. Conf., Barcelona,
Spain (September 2008)

2. Mäder, P., Gotel, O., Philippow, I.: Enabling automated traceability maintenance
by recognizing development activities applied to models. In: Proc. 23rd Int’l Conf.
on Automated Software Engineering ASE, L’Aquila, Italy (September 2008)

3. Mäder, P., Gotel, O., Philippow, I.: traceMaintainer: A Tool for the Semi-automated
Maintenance of Model Traceability. In: (submitted), Enschede, Netherlands (June
2009)


