traceMAINTAINER: A Tool for the
Semi-automated Maintenance of Model
Traceability

Patrick Mader!, Orlena Gotel?, and Ilka Philippow!

! Department of Software Systems
Ilmenau Technical University, Germany
patrick.maeder|ilka.philippow@tu-ilmenau.de
2 Department of Computer Science
Pace University, New York, USA
ogotel@pace.edu

Abstract. traceMAINTAINER is a tool that supports an approach for
maintaining post-requirements traceability relations after changes have
been made to traced model elements. The update of traceability relations
is based upon predefined rules, where each rule is intended to recognize
a development activity applied to a model element and trigger the neces-
sary traceability update directives. This means that little manual effort
or interaction with the developer is required to keep traceability rela-
tions up to date as a development process proceeds. traceMAINTAINER
can be used with a number of commercial software development tools
and enables the semi-automated maintenance of traceability relations
stored within these tools. This paper provides technical details of trace-
MAINTAINER’s architecture and major components.

Keywords: Development activity recognition, evolutionary change, model
traceability, rule-based traceability maintenance, traceability.

1 Introduction

Traceability relations support stakeholders in understanding the dependencies
between artifacts created during the development of a software system. Trace-
ability relations thus enable engineers to perform many development-related
tasks, such as: (a) confirming the implementation of requirements; (b) analyzing
the impact of changing requirements; and (c) supporting regression tests after
changes. To ensure that all these benefits can be realized, it is necessary to have
a complete and correct set of traceability relations between the established arti-
facts. That goal requires, not only the creation of the relations during the initial
development process, but also the maintenance of these relations after changes
to the associated artifacts. The large number of relations that potentially exist
even for a small development project demands effective method and tool support
for these tasks. Several authors (Gotel and Finkelstein [1], Ramesh and Jarke



[2], Arkley et al. [3]) found the necessity to establish and maintain traceability
manually to be the main reason for its rare use in industrial projects.

traceMAINTAINER is a prototype tool that supports the semi-automated
update of traceability relations between requirements, analysis and design mod-
els of software systems expressed in UML ([4], [5]). This is made possible by
analyzing elementary change events that have been captured while working
within a third-party UML modeling tool. Within the captured flow of events,
development activities comprised of several events are recognized. These de-
velopment activities are expressed as predefined rules. Rules consist of masks
requiring an event with certain properties. Once recognized, the correspond-
ing rule gives a directive to update impacted traceability relations to restore
consistency. traceMAINTAINER can enable developers to update traceability
relations with little manual effort. This approach to traceability maintenance
has been described fully in [4] and [5]. A high-level overview of the architecture
of traceMAINTAINER has also been provided in [6]. This current paper specifi-
cally provides more extensive details on the components and implementation of
traceMAINTAINER.

The traceMAINTAINER software has been implemented with Microsoft Vi-
sual Studio .Net and supports the following general scenarios: the analysis of a
flow of change events according to a set of predefined rules imported from a XML
rule catalog; the execution of necessary traceability updates after development
activities have been recognized; and the editing and validation of existing rules,
along with the specification of new rules.

To support these scenarios, traceMAINTAINER consists of multiple compo-
nents (see Figure 1) and is designed with the objective of creating an implemen-
tation that is as independent as possible from specific third-party UML modeling
tools. The central component, the rule engine, handles the development activity
recognition and computes the maintenance directives. It provides an interface for
receiving new change events and requires an interface for querying and updating
traceability relations. The rule engine is deployable with any tool that allows
the necessary change events to model elements to be captured, and that allows
its traceability relations to be established and changed from outside the tool.

Rule
Editor

o

UML Modeling Tool Event RuleEngine
Generator | Change Events

%ﬁ Add-in [ }F——CO——-_ H :EventController
I

traceSTORE :OpenActivityCache V
C Add-in
Model Link Queries :RuleCatalog —=> Rules
m and Updates
— [IJ—O)—EIJ— :LinkUpdateManager

I
H
0

Fig. 1. Overview of the traceMAINTAINER components



The change event interface is designed to be used by a tool-specific event
generator that recognizes changes to model elements and collects data about the
changed model element in order to create change events for the rule engine. The
required query and update interface also has to be implemented by a tool-specific
adapter. Depending on where the traceability relations are stored, the adapter
gives access to relations stored within the tool’s model or to an external relation-
ship repository. For the prototype, the additional traceSTORE repository has
been implemented. traceSTORE enhances the third-party UML modeling tool
used and stores relations within its model, but provides for significantly more
functionality in terms of traceability than the modeling tool itself. In addition,
a rule engine reads a rule catalog stored in XML format. This catalog can be
edited and validated with a specific rule editor. Each of the major components of
traceMAINTAINER is described in detail in the following sections of the paper.

2 Rule Engine

The rule engine is the main component of traceMAINTAINER. It consists of
an EventCache that holds a number of last incoming change events from the
event generator, an OpenActivityCache that holds all partly recognized activi-
ties for the events currently held in the EventCache and a LinkUpdateManager
that determines the necessary traceability maintenance actions for recognized
development activities. It depends upon the rule catalog for its operation (see
Section 5).

The rule engine has a single user interface intended for the normal user. This
is the interaction dialog that automatically pops-up in situations where a devel-
opment activity has been recognized, but not enough information is available to
carry out the traceability update completely automatically (see Figure 2). The
dialog provides detailed information about the recognized development activity
and the necessary update. The dialog text can be customized within the rule
catalog as all the properties of events assigned to the recognized activity can be
used to build this description (e.g., names and types of changed model elements).

The dialog shows two list boxes separating the incoming and outgoing trace-
ability relations involved in the update context. Each row in these boxes repre-
sents an existing or potential new traceability relation. Pictograms depict exist-
ing relations and reflect decisions on desired update actions. They distinguish
relations that will remain, those that will be created and those that will be
deleted during the update depending on the decision of the user. Relations with
the same element on the target side are grouped together using the same back-
ground color. A group shows the relations residing on one or more update source
elements and allows the user to create these on the update target element(s). The
user can decide to keep (stay is the default and preselected action) or delete exist-
ing relations on the source elements. For the target elements, the user can decide
to create or discard the relation. A decision on the proposed relations without
preselected actions determined is required to be able to complete the update
(i.e., all the boxes on the right hand side of the relations must be checked). In



Development activity description Update visualization Each row represents a traceability relation,
separated into incoming and outgoing relations

=

Source Element Target E\emen/ Update
stay  delete Oder =00 ---—m—moo—- r-—=*  Create Order stay
create  discard  AudioSystem oms g oo Create

. traceMAINTAINER | Link Update

Development Ygtivity [F13/2] completed

Attribute "audioSystem’ was converted to the néw class "AudioSystem’,

The tr; ility i on attribute “aucli " cannot be updated
automatically. Please decide how to update lhem\

Outgoing Aelations

HEEEA

stay  delete Oider 00000000 —mmmmmmmmmmoeeo » View Order List
create d

stay
discard

} AudicSystem

Incoming Relations

Target Element Source Element Update

sty delete  Oider s==oosssssssssss OrderManager ELETI i |
creal{; discard  AudioSystem OrderManager - [m]

Possible update actions Desired update action

Fig. 2. The user interaction dialog is displayed in situations where a traceability update
cannot be carried out automatically

addition, a change of a proposed action by traceMAINTAINER is made possible,
but not required. Tooltips are provided when the user hovers over the elements
to provide additional information about elements and relations.

For more advanced users interested in the underlying approach, the rule en-
gine provides a window that allows the user to observe the current status of
the EventCache and OpenActivityCache (see Figure 3). The window consists
of three list boxes. The left box gives a view of the events currently in the
EventCache. The right box shows all the partly recognized activities in the Ope-
nActivityCache. The middle box shows properties of events or masks depending
on the selected item in the EventCache (left box) or OpenActivityCache (right
box).

The view on the OpenActivityCache (right box) shows all the masks of cur-
rently open activities and their current state. A mask might have already been
assigned to an event currently in the EventCache, so a click on this mask high-
lights the assigned event in the EventCache (left box) and shows a merged list
of expected event properties defined within the mask and the actual assigned
properties of the event in the middle box. A mask might not yet be assigned, but
be comparable to incoming events. A click on such a mask shows the required
properties within the mask for a matching event (middle box). A mask might
not yet be comparable, because references to other masks cannot be resolved as
those other masks are not yet assigned to an event. Additional functions within
the status window allow the user to reset both caches and to add events stored
in a file to the cache for testing purposes.

A menu further gives access to the settings, grouped into three categories
regarding the EventCache, the recognition process and the update functionality.
The settings associated with the EventCache allow the user to set the size of the
EventCache and to customize the functionality to persistently store all events



B traceMAINTAINER | Status =[8(x|
Settings  Functions
Eum@ﬂn} ﬂpeMtllvlm—)H
Age| Type | Element Type: Mask@ File Mask| Type | Elemert Type | State | Age
postmod | class —— Rue(10/1) [T [del class = |5
5 Walie
1 |premod | class ElemertType o Rul(10/2) [T |del class @ |5
Z |ad class EndliD_o e Rul(14/1)| T |del class = |5
3 |del altibute =ib a1 348 SoE adan | |PUE142)[T[ael class = |5
e | e
a class : e e class
End2ID O4{DECFAAAD 2158 -4Te.
postmod | method Sepaiable o' 1 add apble ~ M@
7 |premod | method 2 |postmod Aatiibute \o
postmod | method Rue(B/) [T |del altibute EIE
8 |premod | methor Fuk(8/2) del altibute
postmod | methor Rulef13/1] del [ atibute
3 [premod | methor Fuls{13/2) el altibute
postmod | methor a class
10| premod | methor pebimod | class
=]
Fue(10/3) [T |prelpod | class E 1
Properties of events or masks Assigned mask (top)
depending on a selection in the Incomparable mask (middle)
left or right listbox Comparable mask (bottom)

Fig. 3. The status window allows the EventCache and OpenActivityCache of the rule
engine to be observed

within the cache upon closing the current model and to restore them when
re-opening. The settings associated with the development activity recognition
allow the user to require a notification on each recognized activity, even if a fully
automated update of relations is possible. This supports demonstration and
debugging tasks. The settings associated with traceability update allow the user
to switch off the update when testing the recognition part of the prototype and to
configure the user interaction dialog for situations where either all the relations
already exist on the update target element or only one relation already exists
on the update source element, thereby reducing user interaction to a minimum.
The rule engine also has extensive logging functionality that allows the user to
analyze and re-execute captured modeling scenarios.

3 Event Generator

As highlighted in the introduction, not all parts of traceMAINTAINER are tool-
independent. The event generator is tool-dependent and the version that is dis-
cussed in this paper has been created as an add-in to Sparx Enterprise Architect
[7]. After an evaluation of current third-party UML modeling tools, Enterprise
Architect was chosen due to its usability, extensibility, ease of installation and
low price. Its traceability support is comparable to that of other such tools, so
stereotyped dependency relations are intended to be used as traceability relations
in accordance with the UML meta-model.

The event generator add-in observes changes to elements of interest and
captures a number of properties to the changed element. The types of element to
be observed and their properties of interest are defined within an accompanying
information model stored in XMI format. The information model can be opened
as a regular model in Enterprise Architect and in other UML tools to allow
the user to customize the generated events in terms of observed elements and
collected properties.



The implementation of how to observe changes to certain model elements and
how to find property values is specific to the modeling tool, but all the remaining
aspects like reading the information model, communicating with the rule engine
and the architecture of the add-in remains common among different adapters. A
reference implementation is provided to support the use of other tools.

4 Relationship Repository traceSTORE

The access to the traceability relationship repository is also a tool-specific part
of traceMAINTAINER. If traceability relations are created and stored by using
the functionality of the third-party UML modeling tool itself (e.g., Enterprise
Architect) then an additional adapter is necessary to make these relations ac-
cessible for the rule engine of traceMAINTAINER so as to query and change
relations. Where traceability relations are stored in an external repository, sep-
arated from the actual model, then an adapter between the rule engine and that
repository is required. Such an adapter has been implemented for the EXTESSY
ToolNET traceability repository [8].

Both solutions have their advantages. If traceability relations are stored di-
rectly with the model itself then it is easier to maintain consistency, whereas
the external repository allows relations to be stored that connect elements of
different tools (in the case of ToolNET). However, the traceability functionality
of modeling tools may not allow for all types of model elements to be related
(e.g., attributes, methods and associations are not traceable in Enterprise Archi-
tect) and the handling of traceability relations may be rudimentary. ToolNET
provides more functionality but obviously requires the user to use an additional
tool.

An additional relationship repository was created to evaluate the approach
supported by traceMAINTAINER. The traceSTORE is like the event generator
implemented as an add-in for Enterprise Architect. It provides an additional
menu within Enterprise Architect that allows the user to store traceability rela-
tions connected to any kind of model element within an extra class model that
extends the related model. This approach prevents inconsistencies that are likely
to occur between a model and a separately stored set of traceability relations.
The traceSTORE context menu of a model element provides features to see
and navigate to the associated elements of an existing relation, to start or end
a new relation, and to delete an existing relation as required. The subjects of
our experiments and our industrial evaluation partners have reported that this
tight integration with the modeling tool assists traceability even when performed
manually ([4], [5]).

The creation of a new traceability relation incorporates three steps. After
selecting a source and a target element, a dialog is shown visualizing the desired
relation. This allows the user to choose a different relation type to the default
‘trace’ type. After committing, traceSTORE creates two classes representing
references to the two related elements and a dependency relationship between
them in the extra class model. Each reference contains the identifier, name, type



and model of the original element. A stereotype storing the type of the relation
is then attached to the dependency relationship.

traceSTORE addresses another requirement that arose while developing the
approach for semi-automated traceability maintenance. All related elements are
enhanced with indicators showing the current number of incoming and outgoing
traceability relations on an element. This feature enables immediate feedback to
the user after automated changes have been performed to traceability relations
by traceMAINTAINER for ongoing status visibility.

In addition to creating, deleting and navigating through traceability relations,
traceSTORE allows the user to import traceability relations that have already
been created and stored within a tool’s model into traceSTORE, to export re-
lations from traceSTORE back into the model, and to check the consistency
between the model and the relations in traceSTORE. For related elements, it
validates they still exist within the model and updates additional stored infor-
mation. For relations, it validates and updates their depicted count of related
elements within the model, and further checks for false relations like self-links,
multiple relations of the same type between the same elements, and false or miss-
ing types of relations. Note that the consistency check is only necessary after a
malfunction of traceSTORE, if the model is being evolved without traceSTORE
being enabled, or if the user performs manual changes to the traceSTORE class
model.

Upon opening a new model within the modeling tool, traceSTORE reads the
project-sepcific traceability information model that provides information about
permitted and required traceability relations. Within traceSTORE, this informa-
tion model is used to validate any intended new traceability relation regardless
of whether created manually by the developer or as part of a semi-automatic
traceability update. This means that only defined traceability relations can be
created manually by the user or as part of the automated traceability updates
of traceMAINTAINER.

5 Rule Editor and Rule Catalog

The rule editor (see Figure 4) is a stand-alone application that is intended to
help in two use scenarios.

First, it validates an existing rule catalog upon opening it according to four
categories of possible failures: the structure of the rule catalog’s XML file is
validated against an XSD schema definition; the element types and properties
defined within masks are validated against the information model that defines
events to be generated and the information contained within them (see Sec-
tion 3); the syntax of required values for properties is validated against regular
expressions also defined within the information model; and all references are
validated for the existence of the referenced element within the definition of the
current rule.

Second, it provides functionality to edit and create all parts of a rule catalog
whilst also validating the changes. For rules, the update and the description



-loj x|
Ele Edit Options Info Catalog version: 0.5.100
Rule  Element Narne - Deseription

{— Allrules of the

2lack Hove package %1 %2 vas moved from %3 44 to 35
package 6. catalog
onve attzibute to a class & erted to
ateribute
c
o

= [~ Allalternatives of

selected rule
> add assor;

All masks of selected
alternative

[ All properties of
selected mask

cancel

Fig. 4. The rule editor allows the rule catalog to be customized while validating the
entries

provided within notifications can be customized (see Section 2). Each alternative
can have an informal description supporting the comprehension of the catalog
for later changes. An alternative consists of exactly one TriggerMask and a
number of additional masks. Each mask has a type of change (i.e., add, delete,
pre-modification or post-modification) and a number of required properties, all
part of the information model. The required values of properties can be defined
as static values or references to properties of other masks of the alternative.
Boolean expressions are supported to allow logical combinations of several values.
To support definition, typical values for each property can be stored in the
information model and provided within a drop-down box in the rule editor.
Each entry made for a property is syntax-checked and all defined references
are checked for their existence within the alternative. Failures are indicated by
highlighting the syntax mistakes and reference mistakes.

6 Scenario of Use

A simple scenario is provided to illustrate the use of traceMAINTAINER: a
change to a requirement impacts a realized use case and it becomes necessary
for the developer to convert an existing attribute within one class into its own
class (see Figure 5).

Step 1 of the figure shows the initial situation and the traceability relation
between class Order and use case Create Order. Steps 2 to 5 show one way for the
developer to carry out the development activity based on a sequence of elemen-
tary changes. With the last elementary change, deleting the original attribute,
the development activity is recognized by traceMAINTAINER and the neces-
sary update of traceability relations is performed automatically. Step 6 shows
the automatically created traceability relation between class AudioSystem and



13 sLinked 4 3 dsLinked» AudioSystem
o b
~ Order ( -
Order o b version: enum
~racen istin - audioSystem: bool —
- audioSystem: bool Create Order User

Step 4: ADD association between class Order and audioSystem

Step 1: Change of a traced requirement

[ troceMAINTAINER | Link Update

13 asLi

13 isLinked Developmen activy [R13/2] completed.
s ned ( New Class O purinute ‘audiosystem 1
Order t ‘

One traceabilty relation between class ‘Order* and
‘and another

- audioSystem: bool

Step 2: ADD a new class Step 5: DEL original attribute audioSystem /

T3 dslinked> @dioSystenB 13 dslinked» 13 dslinkeds
Order Order udioSystem

versionTenum

- audioSystem: bool version: enum

Step 3: MOD - rename new class and add additional properties Step 6: Traceability relations have been updated automatically

Fig. 5. Development activity with semi-automated traceability maintenance

use case Create Order. traceMAINTAINER can recognize the same development
activity via any ordering of the same elementary changes or via different sets of
change events.

The scenario is representative of most development activities. Nevertheless,
there are activities that, although recognized by traceMAINTAINER, do not
lead to clear directives for traceability update. In such situations, the dialog
depicted in Figure 2 is shown after recognizing a development activity and so it
requires the user to decide upon the update for certain traceability relations.

7 Status

traceMAINTAINER provides an extensive set of features for implementing and
maintaining traceability between a broad spectrum of UML model element types.
The underlying approach is intended as a complement to those approaches that
initially create a set of traceability relations using manual or automated tech-
niques. Limitations of the approach are that only predefined activities can be
recognized and these are unlikely to reflect all possible development approaches,
so it is necessary to customize the rules to project specifics.

The prototype tool’s main component, the rule engine, has been implemented
independent of a specific UML modeling tool and supplies a well-defined API. In
this paper, we have described tool-specific extensions for the Enterprise Architect
modeling tool to satisfy the API and further enhance its existing traceability
functionality. We have created a rule editor for the definition, customization
and validation of rules to allow for easy evolution. The recognition part of the
approach required a complex and sophisticated implementation. To ensure the
quality of the implementation while the prototype was evolving, an extensive
set of automated unit tests was created and executed during the build process.
In addition, captured scenarios of elementary change events with known results
provide black-box and integration tests that were executed before releasing new
versions to testers and users.



The current version of traceMAINTAINER is a second completely reengi-
neered and restructured revision of all components. This version has proven sta-
ble in two industrial evaluation projects at Siemens. Initial experimental results
have been encouraging ([4], [5]) and further industrial case studies are planned.
Recently, a larger experiment with sixteen subjects, eight of them working with
traceMAINTAINER and eight of them performing manual traceability main-
tenance was carried out. All the subjects had to perform the same modeling
tasks on a given development project over a period of three hours. Analysis
of the resulting models and the captured changes, performed either manually
or supported by traceMAINTAINER, showed that the subjects of the trace-
MAINTAINER treatment spent approximately 71% less manual effort on main-
taining traceability relations than the subjects within the group that performed
unsupported manual maintenance. The quality of the maintenance was compa-
rable among both treatments [9].

We are currently investigating how to semi-automatically define rules by
observing a developer performing change activities in situ using a rule recorder.
We are further investigating how to handle the undo function within third-party
UML modeling tools effectively, whilst still recognizing development activities
accurately.

Acknowledgments The authors would like to thank Tobias Kuschke, Christian
Kittler and Arne Rofimanith for implementing the prototype.

References

1. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceabil-
ity problem. In: First International Conference on Requirements Engineering
(ICRE’94), IEEE CS Press (1994) 94-101

2. Ramesh, B., Jarke, M.: Toward reference models of requirements traceability. IEEE
Trans. Software Eng 27(1) (2001) 58-93

3. Arkley, P., Mason, P., Riddle, S.: Position paper: enabling traceability. In: Pro-
ceedings of the 1st International Workshop on Traceability in Emerging Forms of
Software Engineering, Edinburgh, UK (September 2001) 61-65

4. Mader, P., Gotel, O., Philippow, I.: Rule-based maintenance of post-requirements
traceability relations. In: Proceedings of 16th International Requirements Engineer-
ing Conference (RE’08), Barcelona, Spain (September 2008) 23-32

5. Méder, P., Gotel, O., Philippow, I.: Enabling automated traceability maintenance
by recognizing development activities applied to models. In: Proc. of 23rd Int’l Conf.
on Automated Software Engineering ASE2008, L’Aquila, Italy (September 2008)

6. Méder, P., Gotel, O., Philippow, I.: Semi-automated traceability maintenance: An

architectural overview of tracemaintainer. research demo. In: Proc. 31st Int’l Conf.

on Software Engineering ICSE2009, Vancouver, Canada (May 2009)

Sparx Systems: Enterprise Architect. www.sparxsystems.com.au

Extessy AG: Extessy ToolNet — Traceability Tool. www.extessy.com

9. Méder, P., Gotel, O., Philippow, I.: Enabling automated traceability maintenance
through the upkeep of traceability relations. In: Proc. Fifth European Conf. on
Model-Driven Architecture FA ECMDA2009, Twente, The Netherlands (June 2009)

® N



