
Do Software Engineers Benefit from Source Code
Navigation with Traceability?

An Experiment in Software Change Management

Patrick Mäder and Alexander Egyed
Institute for Systems Engineering and Automation (SEA)

Johannes Kepler University, Linz, Austria
patrick.maeder|alexander.egyed@jku.at

Abstract—For decades now, mainstream development envi-
ronments provide the same basic automations for navigating
source code: mainly searching and the tree exploration of files
and folders. This may imply that other automations have little
additional value or too steep a learning curve for mainstream
adoption. This paper investigates whether source code navigation
enriched with traceability benefit basic maintenance tasks such
as changing features and fixing bugs in code. To test this, we
conducted a controlled experiment with 52 subjects performing
real maintenance tasks on two third-party development projects:
all with the same navigation tool but half of the tasks with and
the other half without traceability navigation. We found that the
existence of traceability profoundly affected the quality of the
change tasks and fundamentally changed how software engineers
navigated through source code. We show that software engineers
benefit instantly from traceability, without training, which is to
show that the current automations available to software engineers
are by no means sufficient or the only easy ones to use.

I. INTRODUCTION

Traceability relations capture dependencies of artifacts cre-
ated during the development of a software system. Advocates
of traceability cite advantages like easier program comprehen-
sion and support for software maintenance. Despite a growing
popularity, there is little published evaluation about the use
of traceability and stakeholders still perceive the creation and
maintenance of traceability links to be tedious and ineffective
[1].

It is our assumption that a software engineer is expected to
benefit from traceability much like she or he is expected to
benefit from other automations available today: such as search
capabilities or project folder exploration capabilities. To test
that assumption, we set-up a study with 52 subjects perform-
ing real maintenance tasks on two third-party development
projects. For half of the tasks, the subjects were also given
a special automated navigation support based on traceability
information whereas for the other half of the tasks this special
capability was not provided. The navigation capability based
on traceability showed where requirements affected by change
were implemented.

The goal of this work is to investigate whether software
engineers benefit from those capabilities. A change task in-
volves three activities: 1) understanding the problem (change
task), 2) searching for all relevant places in the source code

where a change task needs to be realized, and 3) implementing
the change (changing the code). Automations for navigation
are not expected to support activities 1 and 3 in a significant
manner. However, activity 2 should particularly benefit from
navigation automations based on traceability. The goal of this
work to study automations that are available to a software
engineer for navigation and that use traces.

While to date no full automation for creating and main-
taining traceability between requirements and code exists, this
paper provides the motivation that such automation would be
highly beneficial, based on the observation that subjects work-
ing with traceability navigation were not only 21% faster and
60% more correct but used the navigation features available to
them in a different manner. The data suggest that traceability
holds a great potential in improving source code navigation.

II. METHOD

To study the effects of traceability during source code
navigation, we conducted an experiment.

Participants: Subjects comprised 52 students of computer
science, studying at the JKU Linz. These participants had
an average experience of 5.3 years in software development
and had on average spent one of these years in industrial
environments. The source code used for the experiment was
unknown to the subjects.

Independent Variables: We used two different software
projects: Gantt Project and iTrust. Traceability was either
available to a subject on a particular task (with traces) or it
was not available (no traces). Traces were provided as they
had been created by the original developers, some of them
tracing to source code files and others to methods within files.
Altogether, our experiment included eight distinct tasks: four
tasks for Gantt (subsequently referred to as tasks Gantt A
to D) and four tasks for iTrust (iTrust A to D). The tasks
represent maintenance activities that previously occurred in
these projects. For Gantt we selected bug reports from the
issue tracking system and provided them unchanged to the
participants. For iTrust we compared old versions of the use
case specification with the current one and selected single
change requests. Participants were not required to actually
implement changes, but to identify the artifacts to be changed
and to verbally describe each change. The order in which tasks



were assigned to subjects and the industry experience of a
subject were also considered as variables.

Dependent Variables: This study had three dependent
variables, the overall performance, the workflow, and the
navigation strategy of subjects working on a maintenance task.
Each variable has been operationalized by multiple measures.
Performance was measured by the time to solve a task and
the correctness of the solution. The workflow was measured
as time that a subject spent on three different document types:
the description of a task (task description), source code that
was irrelevant for the solution of a task (irrelevant code), and
source code that was relevant to solve a task (relevant code).
The navigation strategy was measured by how often each of
the four available navigation types were applied: 1) by double
click on a node of the file tree, 2) by a click on a trace in the
trace list, 3) by a click on a retrieved file in the results list of
the search functionality, and 4) by navigating through tabs of
open files.

Design: Participants were randomly assigned, but in a
way that each had equally experienced each level of the
independent variables project, task, and traceability.

Procedure and Material: We spent 20 min going step
by step through the material, explaining the experiment and
the two projects (Gantt, iTrust) to work on. The introduction
further comprised instruction on the use of the experimenting
tool and two practice exercises with the experimenting tool
distinct from the experimental tasks. After the exercises, each
participant had to complete the first part of the questionnaire,
gathering information about her/his development experience.
We allowed up to two hours for working on the eight as-
signed tasks. For each task, the participants had to capture
their changes in the questionnaire that provided templates for
capturing changes.

Fig. 1. The experimenting tool and its major features

Experimenting Tool: In order to control and capture
participants’ actions during the experiment, we implemented

a specific editor tool. We decided against a standard IDE (like
Eclipse), because we could not ensure that all our subjects
would be equally experienced in using the more sophisticated
functionality of the tool, creating a possible bias in the results.
The developed tool is a text editor with typical development
support (see Figure 1). It provides a tree selector for browsing
the project structure and opening files from it. Multiple files
can be opened in separate tabs, and the content of files is
syntax highlighted (both JAVA and JSP). Additionally, users
can conveniently search within all files of a project and within
a selected file. Traceability links are provided in a separate
window above the tree selector. A click on a link opens the
related file and shows the related method, if the trace refers
to a specific method.

III. RESULTS

The discussion of results is split into three research ques-
tions: 1) how does the performance of a maintainer working
with traceability differ from one working without traceability,
2) how much of the time to solve a task was spent on which
type of document, and 3) what type of navigation has been
used by subjects to solve a task. The following subsections
refer to these questions respectively.

A. Performance with and without Traceability

We found that subjects working with traceability performed
tasks on average 21% faster and created 60% more fully
correct solutions. Statistically, both differences are highly
significant. Subjects working on the Gantt project experienced
a stronger support through traceability (24% faster, 91% more
correct solutions) than on the iTrust project (18% faster, 38%
more correct solutions).

B. Workflows with and without Traceability

Workflow refers to the amount of time that subjects spent on
the document categories: task description, files that required
a change in order to solve a task (relevant code), and files
that were not required to be updated in order to solve a task
(irrelevant code).

Type of Task: We found that across all tasks, subjects
working with traceability spent more time on relevant code
than subjects working without traceability (45% Gantt A –
501% Gantt B). Subjects working without traceability spent
considerably more time on irrelevant code. In relation to the
performance of subjects, these results show that a faster and
more correct task completion of subjects with traceability
correlates with more time spent on relevant code.

Progress: Figure 2 shows an effort distribution across
document types in relation to the stage of progress of a task
solution. We divide the overall time, a subject was working
on a task into four quarters of equal length. Only correct
solutions have been aggregated for the figure. Independently
of whether a task was performed with or without traceability,
with each additional quarter, subjects spent a growing amount
of time on relevant files. While the task description becomes
at the same time less important. Especially in the first three



Ti
m

e 
sp

en
t o

n 
do

cu
m

en
t t

yp
e 

[%
]

0.0

0.2

0.4

0.6

0.8

1.0

Quarter I Quarter II Quarter III Quarter IV

task description
irrelevant code
relevant code

no tra
ces

with tra
ces

no tra
ces

with tra
ces

no tra
ces

with tra
ces

no tra
ces

with tra
ces

Fig. 2. Percentages of time spent on understanding the task, browsing
irrelevant code, and browsing relevant code separated into four quarters of
progress per task (only correctly solved tasks)

quarters, subjects with traceability spent considerably more
time on relevant files than those working without traceability.
Indicating that subjects were willing to be led and explore the
relevant places within the source code with traceability. The
fourth quarter is distributed almost similar for subjects with
and without traceability, indicating that the process of finding
a solution to a task is not dependent on the availability of
traceability. Subjects solving a task correctly with traceability
spent across all quarters less time on the task description
than subjects without traceability. For people, which are able
to solve a task, traceability slightly lowers the time for
understanding the problem.

Ti
m

e 
sp

en
t o

n 
do

cu
m

en
t t

yp
e 

[%
]

0.0

0.2

0.4

0.6

0.8

1.0

0 years 1−3 years 4−6 years

task description
irrelevant code
relevant code

no tra
ces

with tra
ces

no tra
ces

with tra
ces

no tra
ces

with tra
ces

t=959s t=706s t=867s t=765s t=749s t=603s

Fig. 3. Percentages of time spent on understanding the task, browsing
irrelevant code, and browsing relevant code in relation to the industry
experience of subjects in years

Industry Experience: Figure 3 shows the effort distri-
bution across document types in relation to the industry
experience of subjects. For subjects working with traceability
no significant differences are visible. For subjects working
without traceability, the plot shows that more experienced
subjects spent more time on relevant code and task description
and less time on irrelevant code. Subjects with traceability and
no industry experience create 159% more correct solutions, but
that effect is diminishing for subjects with more experience
(4–6 years of experience: 6%).

C. Navigation Strategies with and without Traceability

All subjects were able to navigate by three means: double
clicking on a file name in the tree selector (tree), clicking on

a file name retrieved by a search (search), and clicking on a
tab containing an already opened file (tab). Additionally, for
tasks solved with available traceability, subjects could click on
a trace (trace).

Task Type: For tasks were traceability was available,
it was used for 20 − 62% of the navigations depending on
the task. Subjects working without traceability replaced the
missing trace navigation with searches (34− 48% of the nav-
igations). For tasks with traceability, the search functionality
is used to a much smaller extend (1− 23%). Navigation from
the file tree has been used by subjects without traceability
for 16 − 30% and by subjects with traceability for 4 − 23%
of all navigations. The availability of traceability seems to
have no effect on that type of navigation. Subjects without
traceability navigated 26 − 38% through tabs and subjects
with traceability 18 − 52%. By further evaluating the data,
we found that subjects regularly used traces to focus on files
which were open already. That fact explains the lower number
of tab navigations.

Progress: Figure 4 shows the distribution of navigation
types in relation to the progress of a task solution (four
quarters), without and with traceability and includes only
correctly solved tasks. Subjects working with traceability used
it in quarter one extensively. In the following quarters trace-
ability becomes stepwise less relevant and is mostly replaced
by tab navigation. Subjects without traceability, apply the
search functionality instead, also with a shrinking relevance
from quarter to quarter. In quarters three and four, subjects
with traceability apply less tab navigation than those without
traceability. We found that subjects used traces to switch tabs,
instead of finding and selecting the tab directly.

N
av

ig
at

io
n 

ty
pe

 d
is

tri
bu

tio
n 

[%
]

0.0

0.2

0.4

0.6

0.8

1.0

Quarter I Quarter II Quarter III Quarter IV

tab
tree
search
trace

nav=4 nav=5 nav=6 nav=7 nav=6 nav=7 nav=5 nav=6

no tra
ces

with tra
ces

no tra
ces

with tra
ces

no tra
ces

with tra
ces

no tra
ces

with tra
ces

Fig. 4. Distribution of navigation types as percentage of all navigations
separated into four quarters of progress per correctly solved task

Industry Experience: Figure 5 shows the distribution
of navigation types in relation to the industry experience
of the subjects that were performing the task. There is
a clear tendency, independent of available traceability, that
more experienced subjects use searches more frequently for
navigating. These searches replace tree navigation, which is
more frequently used by less experienced subjects. Traceability
navigation appears to largely displace search-based navigation
and used equally well independent of experience.



N
av

ig
at

io
n 

ty
pe

 d
is

tri
bu

tio
n 

[%
]

0.0

0.2

0.4

0.6

0.8

1.0

0 years 1−3 years 4−6 years

tab
tree
search
trace

no tra
ces

with tra
ces

no tra
ces

with tra
ces

no tra
ces

with tra
ces

nav=27 nav=18 nav=20 nav=24 nav=16 nav=20

Fig. 5. Distribution of employed navigation types as percentage of all
navigations in relation to the industry experience of subjects

IV. THREATS TO VALIDITY

This section discusses what is considered to be the most
important threats to the validity of the experiment. Our exper-
iment shows results of subjects with a spread of experiences,
but with overall little industrial experience (on average 1 year)
and does accordingly not allow us to draw conclusions for
more experienced developers. In order to exhaustively explore
these effects an additional study with more experienced sub-
jects is required and planned by the authors. We tried to
keep all aspects of the experiment as realistic as possible,
applying two systems, using four tasks per project and having
different kinds of real tasks (bug reports vs. feature request).
Systems, tasks and traces have been used in the original
state. Focusing on the tasks we selected, our results show
that all are neither overly easy nor unsolvable, suggesting
a balanced selection. To decrease variability in knowledge
across participants we provided a written introductory tutorial.
Treatments were randomly assigned to the participants in
order to balance learning effects. None of the participants
knew the development perspective of the projects prior to the
experiment.

V. RELATED WORK

Maintenance is a major cost driver in the development of a
system and traceability navigation could potentially reduce that
costs, but so far no empirical evidence is available. There are
several studies focusing on software maintenance, e.g., Dzidek
et al. [2] study the costs and benefits of UML documenta-
tion for software maintenance and Curtis et al. [3] compare
the performance of subjects solving maintenance tasks with
complexity measures (e.g., Halstead and McCabe metrics)
evaluating the same tasks. Ko et al. [4] study ten developers
while trying to understand unfamiliar code. The authors state
that: “Eclipse’s navigational tools caused significant overhead”
during that process. Subjects collected relevant information

as file tabs and others, but that markers got lost again as
these interfaces were used for other tasks. On average, 35%
of the time was spent on mechanics of navigation within and
between files – quite consistent with an observation by Glass
[5]. Empirical work on requirements traceability was focused
on very general questions [6], [7], but not on assessing the
actual effect of traceability for certain development activities.

VI. CONCLUSIONS

We conducted a controlled experiment with 52 subjects
performing 315 maintenance tasks on two third-party devel-
opment projects: half of them with and the other half without
traceability navigation. Our finding is that traceability navi-
gation has a profound effect on the performance, the quality,
and the workflow of how change tasks are tackled. We found
that subjects relied predominantly on traceability navigation
when it was available, displacing mostly the search navigation
which was predominant when traceability navigation was not
available. Participants adopted traceability immediately, from
the first performed task as their major way of navigation within
the source code (without training). Traceability navigation was
the means to quickly identifying which parts of the code need
changing. Understanding the change task appeared to benefit
little from traceability and neither did formulating a solution
once the relevant code was found. Concluding, our study gives
additional support for traceability research due to its ability for
improving basic software maintenance tasks.

ACKNOWLEDGMENTS

We would like to thank all participants for their dedicated
work and the developers of Gantt and iTrust for making
their work publicly available. This research is funded by the
Austrian Science Fund (FWF): M1268-N23.

REFERENCES

[1] P. Arkley and S. Riddle, “Overcoming the traceability benefit problem,”
in 13th Int’l Req. Eng. Conf., 2005, pp. 385–389.

[2] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of UML in software maintenance,”
IEEE TSE, vol. 34, no. 3, pp. 407–432, 2008.

[3] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love,
“Measuring the psychological complexity of software maintenance tasks
with the halstead and mccabe metrics,” IEEE TSE, vol. 5, no. 2, pp.
96–104, 1979.

[4] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE TSE, vol. 32, pp. 971–987,
2006.

[5] R. L. Glass, Facts and Fallacies of Software Engineering. Boston, MA:
Addison-Wesley Professional, 2002.

[6] O. Gotel and A. Finkelstein, “An analysis of the requirements traceability
problem,” in Proc. 1st Int’l Conf. Req. Eng. ICRE94., 1994, pp. 94–101.

[7] B. Ramesh and M. Jarke, “Toward reference models of requirements
traceability,” IEEE TSE, vol. 27, no. 1, pp. 58–93, 2001.


