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Abstract

For anything but the simplest of software systems,
the ease and costs associated with change management
can become critical to the success of a project. Estab-
lishing traceability initially can demand questionable
effort, but sustaining this traceability as changes
occur can be a neglected matter altogether. Without
conscious effort, traceability relations become increas-
ingly inaccurate and irrelevant as the artifacts they
associate evolve. Based upon the observation that there
are finite types of development activity that appear to
impact traceability when software development proceeds
through the construction and refinement of UML
models, we have developed an approach to automate
traceability maintenance in such contexts. Within
this paper, we describe the technical details behind
the recognition of these development activities, a task
upon which our automated approach depends, and we
discuss how we have validated this aspect of the work
to date.

Keywords: Automated traceability maintenance;
Change management; Development activity recogni-
tion; Rule-based traceability.

1 Introduction and motivation

Traceability serves to provide a logical connection
between artifacts of the software development pro-
cess, at levels of granularity deemed appropriate on a
project-by-project basis, so is a mechanism that sup-
ports all those activities that require such an overview
of a project [6]. For change management, traceability
delivers important information about the possible con-
sequences of a changing requirement on other require-
ments and artifacts of subsequent development stages.

For project management, traceability supports the con-
trol of a project’s progress, as well as provides a way
to demonstrate the realization of user requirements. In
short, traceability is essential for quality-oriented soft-
ware development practices.

Though widely accepted as beneficial, the costs as-
sociated with traceability can be considerable, so the
return on investment is debated [1], [3]. Unless man-
dated, traceability is rarely extended and used through-
out all development stages, due firstly to the number
of artifacts or elements therein that would have to be
related to yield value, and secondly to the need to main-
tain these relations each time a change occurs. Even
where the set of relations is minimal, the maintenance
of this traceability demands time and care. While much
attention has been directed toward approaches for es-
tablishing traceability initially amongst artifacts, less
attention has been paid to ensuring this traceability re-
mains relevant over time. This is the problem of trace-
ability decay and the subject of our work.

The maintenance of traceability relations is a multi-
step activity. Firstly, as changes occur to the arti-
facts of software development, it is essential to appre-
ciate both where and how these artifacts play a role
with respect the current traceability, along with an
understanding of the encompassing development ac-
tivity that can help to characterize the nature of the
change. Secondly, it is necessary to understand the
impact of the development activity on the traceability
and to carry out those subsequent activities that can
re-establish the traceability to at least the prior levels.
These core tasks: (1) recognizing those artifact changes
that matter; and (2) the updates that are needed to
bring the traceability back into balance, should be con-
nected with each other in order to focus on maintaining
traceability relations automatically. They demand ef-
fective method and tool support to offer a situation in
which the benefits of traceability exceed its costs.

We introduced our approach for automated trace-



ability maintenance in a previous paper [10]. This ear-
lier paper provided an overview of the approach and
described its focus on automatically maintaining trace-
ability within the context of UML-driven software de-
velopment. In this current paper, we focus on the tech-
nical details associated with the first of the two core
tasks, that of recognizing those artifact changes that
matter. The technical details underlying traceability
update will be the focus of a future paper.

The paper is organized as follows. In Section 2, we
provided high-level details about our approach to au-
tomated traceability maintenance and the context of
software development for which it has been developed
initially. In Section 3, we describe how development
activities are monitored within a tooling environment
and how change events are generated. In Section 4,
we explain the rules we use to recognize recurring de-
velopment activities. In Section 5, we detail the rule
application process. In Section 6, we discuss our initial
validation, and then we end the paper with a summary
of related and future work.

2 Automated traceability maintenance

Our approach is founded upon the following observa-
tions: while changing any kind of model/artifact, it is
possible to capture the rudimentary change actions and
information regarding the properties of the changed el-
ement; one can understand the intention of these simple
change actions within the context of a chain of related
change actions on an element comprising a wider devel-
opment activity; and knowledge of an intentional de-
velopment activity provides the information necessary
for pre-existing traceability relations to be updated to
reflect the changes. Our approach therefore records all
changes to a model and uses this information to find
matches between a set of predefined patterns of de-
velopment activities, which in turn instigates requisite
traceability actions.

Currently, the approach is restricted to the analy-
sis of changes to those models described via structural
UML diagrams (e.g., class, object, composite structure,
package and component diagrams). We are currently
investigating how to extend the approach to support
the behavioral diagrams of the UML and also to han-
dle additional types of model.

Model-based software development offers a way to
address the problems of increasing size and complexity
of software systems [8]. A variable number of abstrac-
tion layers (models), with increasing level of detail,
can be created to document a problem and its solu-
tion, from the initial requirements through to the final
implementation. As the elements of these models de-

scribe the same system, there are benefits in establish-
ing explicit traceability relations between these mod-
els to handle change. Such development approaches
are characterized by iteration, so changes to model el-
ements happen regularly, making traceability mainte-
nance a valuable but time consuming proposition. Few
industrial projects implement traceability in this fash-
ion due to perceived and actual costs, as highlighted
earlier.

Our approach observes elementary changes applied
to UML models, recognizes the broader development
activities and triggers the automated update of im-
pacted traceability relations. Figure 1 illustrates the
approach and its constituent parts. Within this pa-
per, we only describe the technical details behind the
automated recognition of development activities, not
the update mechanism. We assume the developer to
be using a CASE tool for the creation and change of
UML models. A tool-specific event generator provides
standardized events to a rule engine (see Section 3).
The rule engine (see Section 5) stores a configurable
number of change events within a buffer and matches
these to predefined rules from a rule catalog. These
rules and their representation are explained in Section
4. The recognition of change type therefore happens in
the background and in parallel with the developer per-
forming a change on a model within the tool. Once this
information is available, it can be used to support the
developer in various software development tasks (see
Section 5.3). For our research, this means to perform
the necessary update of traceability relations, so we are
primarily interested in recognizing those model changes
which impact this and updating accordingly.

3 Generating events for model changes

The structural UML diagrams consist of a limited
number of model elements, so we focus on classes, com-
ponents, packages, attributes, methods, associations,
dependencies and inheritance, and all stereotyped ver-
sions of these. We distinguish three basic types of
change to models described by these diagrams. Ele-
ments can either be added, deleted or modified. We
refer to such actions as elementary changes.

For each type of elementary change, events are gen-
erated. Events contain information about the type of
change and properties of the changed element. For the
addition of an element, these properties exist only af-
ter the creation of the element, and for deletion they
exist only before destruction. For modification, both
pre and post modification properties are available and
required for analysis. We thus define four elementary
change events: ADD, DEL, preMOD and postMOD.
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Figure 1. Overview of the approach and its constituent parts

These elementary changes form part of wider inten-
tional development activites. To be able to find related
changes in the flow of all elementary changes applied
to a model, additional properties of a changed model
element have to be compared. The minimal required
properties of an element are its ID and its type, but
other properties are necessary to allow for a distinct
recognition depending on the type of element involved.
Figure 2 shows the configurable information types that
we currently use with the approach. Note that this fig-
ure depicts part of the UML meta-model extracted to
show the different types of supported model element
and properties of such that we are interested in. Fig-
ure 3 depicts one of the development activities that we
are able to recognize, the conversion of an attribute into
a class. The figure shows four elementary changes and
the change events generated from these. Within the
figure, the events are simplified in terms of properties
to show only a part of each event.

4 Recognizing development activities

The challenge in recognizing the development activi-
ties applied to a model based on underlying elementary
changes is variability. Not only can different orders of
the same elementary changes establish a single devel-
opment activity, but different types and numbers of el-
ementary changes can establish the same development
activity. There are many permutations to consider.
We are therefore not able to instantly recognize devel-
opment activities as changes are applied to a model;
it is necessary to predefine what we want to recognize
and process incoming events within this context.

Our strategy for creating a rule catalog suitable for
recognizing development activities was iterative, as il-
lustrated in Figure 4. We derived our set of devel-
opment activities based on a systematic study of the
related literature and according to our own experience
from performing and consulting on UML-based soft-
ware development projects. We do not consider the
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Figure 2. Configurable information types to
capture changes to structural UML models

current set of rules to be complete, but it is being im-
proved with every use and appears to be stabilizing.

The current set comprises thirty-eight development
activities (twenty-one rules with sixty-seven alterna-
tives). Development activities that apply to relations
include: refining an unspecified association into one or
two directed associations; refining an association to ag-
gregation or composition; resolving one to many asso-
ciations; resolving many to many associations; and re-
solving association classes. Development activities that
apply to classifiers include: splitting a class; converting
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Figure 3. A recurring development activity
with simplified thrown change events

an attribute to a class; refining an unspecified associa-
tion into one or two directed associations; resolving one
to many associations; and resolving association classes.
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4.1 Rule definition

Since our approach depends upon each development
activity to be recognized in terms of its constituent ele-
mentary changes, one aim was to create rules that allow
for the necessary variability described above without
the necessity to define exactly each possible permuta-
tion. To achieve this, we rely on the concept of masks.

Masks We define the elementary changes that com-
prise a recognizable development activity as masks.
Each property that needs to be compared is defined
within the mask. Values of the properties can be de-
fined as static expected values or as references to the
properties of another mask within the same develop-
ment activity. The latter means that the value is ex-
pected to be the same as the value of the referenced
property of a change event that has been already as-
signed to a different mask of the same development
activity. These references between masks allow elemen-
tary changes to be related to one another.

A mask therefore defines those properties of a
matching change event that have to take certain values
and those that may take any value. By laying masks
over an incoming event, one can determine whether
the event matches a step of an activity or not. By this
mechanism, we are able to require a certain type of
change to an element (i.e., add, delete or modify) and
a certain state of the element’s properties before or af-
ter the change to ease recognition. Since modifications
often happen incrementally, with a developer changing
some properties before realizing that another modifica-
tion is necessary, a mask defined to require the changed
element to take a certain state after a modification will
allow for a number of modification events to the ele-
ment before the actual matching event is incoming.

Sequence of changes At least two masks have to
be defined as a change sequence to define a develop-
ment activity. This is because to identify an activity
one need to compare at least two states, before and
after the change. The order of the masks within the
change sequence does not imply any required order of
the incoming events. As most masks are dependent
upon other masks by referencing their values, it might
not be possible to compare a matching change event
immediately after its arrival. To address that circum-
stance, we hold a number of past incoming events in
an EventCache and can assign matching events as soon
as the mask is comparable, which means that all ref-
erences of the mask can be resolved (see Section 5.2).
There is one mask within each change sequence that
must have no references. This mask is called the Trig-
gerMask. The change defined by the TriggerMask is
modifying or deleting the original model element and
is the action that actually starts the development ac-
tivity. As it is possible to create the enhancing or re-
placing structure before changing the original element,
the event matching the TriggerMask is not necessarily
the first incoming event. The algorithm described in
Section 5.2 starts to compare additional development
activities with an incoming TriggerEvent.



Alternative sequences To address the issue that it
is possible to perform a development activity in mul-
tiple ways, we group several change sequences as one
rule able to recognize the same development activity.

4.2 Rule representation

We define our rules in the open XML format. A
self-defined XML Schema Definition (XSD) gives the
syntax of a rule. The head of a rule consists of a dis-
tinct <Rule ID>, a description of the development ac-
tivity it is able to recognize and the type of the model
element the activity focuses upon. The rule then con-
sists of one or more <Alternative> sections. These
sections reflect different sequences of change events to
accomplish the same activity (see Section 4.1). Each
alternative is composed of a <ChangeSequence> and a
<LinkUpdate>. The <ChangeSequence> consists of a
definition of all expected elementary change events as
masks to recognize the sequence. The <LinkUpdate>
defines all source elements impacted by the activity and
all target elements that have been impacted, created
or modified during the activity and require update of
traceability relations (see Section 5.3).

Masks are defined as <Event> sections within a
<ChangeSequence>. Every event mask has a unique
ID which is used to reference properties of other events
during mask definition. There is the one special Trig-
gerEvent ID=”T” within each sequence that allows the
rule engine to recognize the development activity. The
remaining events are numbered starting with ID=”1”.
An <Event> itself consists of property-value pairs for
event type, element type and all the element properties
that shall be compared with incoming events.

Listing 1 shows part of the rule to recognize the de-
velopment activity of refining one unspecified associ-
ation into two unidirectional ones. We use a special
notation for the masks within the <Event> section of
the listing to save space. Within the rule catalog, each
of the comma separated property-value pairs is repre-
sented as a property tag with a value in XML nota-
tion. Alternative 2 of this rule assumes the developer
to delete the existing association and to add two new
ones. Alternative 3 assumes the modification of the
existing association and the addition of one new one.

Since one development activity might be completely
part of another (e.g., an unspecified association could
be replaced by one directed association or by two such
associations) we cannot define two distinct rules that
permit us to recognize the one case from the other.
It is necessary to have a rule for the partial activity
to guarantee that an action is performed for it, but
also a rule for the larger composite activity. It is only

<Rule ID=”2”> <!−− development activity: refinement of one
unspecified association into two unidirectional ones −−>
<Alternative ID=”1” ... />
<Alternative ID=”2”>

<ChangeSequence>
<Event ID=”T”> DEL(’association’, Navigability:’−’ || ’bi’)

</Event>
<Event ID=”1”> ADD(’association’, End1.ID: T.End1.ID,

End2.ID: T.End2.ID) </Event>
<Event ID=”2”> postMOD(’association’, ID:1.ID, End1.ID:

T.End1.ID, End2.ID: T.End2.ID, Navigability:’uni’) </Event>
<Event ID=”3”> ADD(’association’, End1.ID: T.End1.ID,

End2.ID: T.End2.ID) </Event>
<Event ID=”4”> postMOD(’association’, ID:3.ID, End1.ID:

T.End1.ID, End2.ID: T.End2.ID, Navigability:’uni’) </Event>
</ChangeSequence>
<LinkUpdate>

<UpdateSource> T.ID </UpdateSource>
<UpdateTarget> 1.ID </UpdateTarget>
<UpdateTarget> 3.ID </UpdateTarget>

</LinkUpdate>
</Alternative>
<Alternative ID=”3”>

<ChangeSequence>
<Event ID=”T”> preMOD(’association’, Navigability:’−’ || ’bi’)

</Event>
<Event ID=”1”> postMOD(’association’, ID:T.ID, End1.ID:

T.End1.ID, End2.ID: T.End2.ID, Navigability:’uni’) </Event>
<Event ID=”2”> ADD(’association’, End1.ID: T.End1.ID,

End2.ID: T.End2.ID) </Event>
<Event ID=”3”> postMOD(’association’, ID:2.ID, End1.ID:

T.End1.ID, End2.ID: T.End2.ID, Navigability:’uni’) </Event>
</ChangeSequence>
<LinkUpdate>

<UpdateSource> T.ID </UpdateSource>
<UpdateTarget> 2.ID </UpdateTarget>

</LinkUpdate>
</Alternative>

</Rule>

Listing 1. Part of the rule to identify the re-
finement of one unspecified association into
two unidirectional associations

necessary during rule definition to keep in mind that
the partial rule might already be fired and the interim
action completed before the further rule is fired and
the larger activity completed.

While defining rules, one also has to decide whether
one wants to recognize an activity only if it preserves
the initial semantics of the changed model element or
if it is permissible to change the semantics during the
activity. This will depend upon the rigor desired of
the developer. For example, to preserve semantics one
should not refine a directed association into two unidi-
rectional ones. If we require development activities to
preserve semantics, it is possible to be more certain in
recognizing them, and the rules become more narrow
and distinct. Where greater flexibility is demanded, the
rules become more involved. By supporting both ap-
proaches for each rule, however, it is possible to inform
the developer in the case where semantics are violated
if desired, and this is the strategy we adopt.



4.3 Rule editor and validator

We developed a rule editor to assist with the tasks of
rule creation, editing and validation. This has helped
us to address common problems when evolving a rule
catalog: (a) structural issues – by checking against a
XML schema definition (XSD), inconsistencies within
the structure of the rule catalog can be found; (b) el-
ement type and property inconsistencies – by checking
against the current information model (see Figure 2),
undefined properties of elements can be found; (c) syn-
tax errors within property values – by applying regu-
lar expressions, the syntax of property values can be
checked; (d) reference specification errors – as refer-
ences relate to properties of other masks, it is necessary
to check whether the event that will be assigned to the
other mask will have that referenced property and that
the referenced mask is specified within the change se-
quence; and (e) reference dependency errors – as the
assignment of an event to a mask requires the resolu-
tion of all references within the mask, at least one mask
without references (i.e., the TriggerMask) is necessary,
along with an overall tree-like reference structure start-
ing from this mask, with no cyclic dependencies.

5 Rule application

In Section 3, we described the process of generat-
ing a stream of change events reflecting elementary
changes to model elements. In Section 4, we described
the rules that hold patterns of change events that we
want to find within a stream of events. The match-
ing task requires an effective rule engine that is able to
find matches between incoming change events and the
predefined rules. Such reactive systems are built ac-
cording to the Event-Condition-Action paradigm [12].
This paradigm simply defines systems that trigger an
action after an incoming event has matched a defined
condition. As we do not only want to react to a sin-
gle event, but want to react to patterns over the event
history, we need a much more sophisticated rule engine
with complex event processing (CEP) [9]. The design
of our rule engine needs to provide for the variability
we want to permit (see Section 4).

5.1 Rule engine

The rule engine we developed consists of the follow-
ing components (as illustrated in Figure 5). An Event-
Controller that receives new incoming change events,
validates them against the current information model
and handles all the following actions to process the

RuleEngine

:EventCache :RuleCatalog:OpenActivityCache

:EventController :LinkUpdateManager

IncomingEvents LinkChanges

Figure 5. Rule engine overview

event. An EventCache that stores a configurable num-
ber of incoming events in a first in, first out buffer. An
OpenActivityCache that stores all partly recognized,
but still incomplete activities. The RuleCatalog that
holds all the predefined rules. The LinkUpdateMan-
ager that generates link update commands according
to a recognized development activity and invokes a re-
quest for user interaction or intervention if the update
is ambiguous or problematic. How these components
work together to handle incoming change events is de-
scribed in the following section.

5.2 Handling an incoming event

The whole development activity recognition process
is triggered by incoming change events. On the ar-
rival of a new change event within the EventController,
the event is validated against the current information
model. This means that the type of the changed model
element has to be defined within the information model
and all defined properties of this element type have to
be present within the event. Furthermore, the values
of the properties are checked against regular expres-
sions. After validation, the incoming event is passed to
the EventCache, the OpenActivityCache and the Rule-
Catalog. The performed actions within each of these
components are described in turn below.

EventCache The incoming change event is put in
the EventCache. If full (the buffer size is configurable),
the oldest event will be deleted, along with its occur-
rence within all OpenActivities. As all events are mov-
ing through the cache with each incoming event, every
event has an age. Each combination of preMod and
postMod events will be handled as one event within
the buffer as they are triggered by the same elemen-
tary change. This means that both events have the
same age and will be removed together from the buffer.

If the incoming change is a DEL event, all ADD
and MOD events of the same model element will be
removed from the EventCache. This minimizes the
risk of recognizing false development activities. For



DEL events removed from the EventCache, still exist-
ing and hanging traceability relations pointing to the
deleted element will be searched for and deleted. This
means that the deletion is handled as a straightforward
deletion of a model element. For an unassigned ADD
event, at the time when it is going to be removed from
the EventCache, the added element receives a config-
urable tag (e.g., new element) that can be used within
the CASE tool to find and/or highlight those elements
that might require the creation of new traceability re-
lations. That mechanism reflects our assumption that
events that cannot be assigned to a wider development
activity are new elements within the model and need
the creation of a trace, depending on what is specified
in the project’s traceability meta-model (if defined).

OpenActivityCache The incoming change event is
assigned to all OpenActivities with a missing event
equivalent to the incoming event. Each OpenActivity
is an instantiation of one alternative of a rule and con-
sists of a sequence of required change events defined as
masks. These masks of OpenActivities can have one of
three states: not assignable, assignable and assigned.
The state of not assignable means that the mask has
references to other masks that are not assigned with a
matching event as yet (i.e., if we have references in the
mask to the event that is going to be assigned to the
referenced mask, we need to assign that event first).
The state assignable means that the mask is compara-
ble with incoming events and might be assigned once a
matching event is incoming. The state assigned means
that a matching event has been assigned.

The incoming change event is compared with all
masks of all OpenActivities that are in the state
assignable. On a match between the incoming event
and one of the masks, the state of the mask will be
changed to assigned and the mask will receive a ref-
erence to the matching event within the EventCache.
Furthermore, all remaining masks of the rule with the
state not assignable within the OpenActivity of the just
assigned event are recursively tried to set the state to
assignable. If one of these masks becomes assignable,
the EventCache is searched for an event matching that
mask. This mechanism is necessary to handle refer-
ences to masks other than the TriggerMask.

If one or more OpenActivities could be completed
by assigning change events, as described above, these
activities will be deleted from the OpenActivityCache
and passed over to the LinkUpdateManager to carry
out the necessary traceability relation updates (see Sec-
tion 5.3). The change events of the completed develop-
ment activities will be kept within the EventCache to
allow for the further recognition of partly identical ac-

tivities, since one elementary change could contribute
to a number of development activities concurrently.

RuleCatalog The RuleCatalog is searched for al-
ternatives of rules with TriggerEvents matching the
type and properties of the incoming change event. All
matching alternatives are established as new Open-
Activities and the EventCache is searched for match-
ing events to complete the OpenActivities. It is con-
figurable to instantiate only OpenActivities for Trig-
gerEvents caused by changes to linked model elements
to reduce the number of activities, but this might miss
activities in those situations where the developer is cre-
ating traceability relations on the changed model ele-
ment after performing a change.

EventStore On closing the model, the rule engine of-
fers two ways to handle unmatched change events and
OpenActivities within the cache. The user can choose
to discard all events and to delete all hanging trace-
ability relations associated with already deleted, but
not fully replaced, model elements. It is also possi-
ble to store the current events within the EventCache
and to restore these and all OpenActivities on the next
start-up of the model. In that case, all the hanging
traceability relations will be retained.

5.3 Triggering a predefined action

In Section 5.2, we discussed the handling of incoming
change events within the rule engine and their assem-
bly to recognize development activities. During that
process, one or more OpenActivities might have been
completed with the incoming event. Completed Open-
Activities are passed to the LinkUpdateManager.

The LinkUpdateManger acquires information about
the traceability relations on all update sources and all
update targets defined within the rule. Depending on
whether there are traceability relations on at least one
of the update sources, a list of all involved (existent,
inconsistent and not-yet-existent) traceability relations
is created by the LinkUpdateManger. Each relation re-
ceives a tag with the necessary action to update it. In
case there are relations with no distinct action to up-
date, a user dialog displays the situation and impacted
elements, and requires a decision for these cases. De-
tailed information about how the update is performed
is outside the scope of this paper and will be presented
in a subsequent paper. In addition to the maintenance
of traceability, we can foresee support for other devel-
opment tasks, one option being to use the information
about the recognized development activity for the doc-
umentation of changes in a version control system.



6 Initial validation

The objectives of our validation were to: (OBJ 1)
assess whether our rules account for all changes and
the recognition of common development activities; and
(OBJ 2) determine whether the correct rules are fired
when there is variation in task execution.

6.1 traceMaintainer prototype

In order to evaluate our approach, we have devel-
oped a prototype. This has been implemented in Vi-
sual Studio .Net and uses the Microsoft XML Parser.
It supports the following activities: (a) the analysis of
a flow of elementary change events according to a set of
predefined rules that it imports from an XML file; (b)
based on a match between events and rules, it restores
traceability; and (c) the editing of existing rules and
the specification of new rules.

The prototype has been designed to be independent
of specific CASE tools. The intention is for it to be de-
ployable with every CASE tool that allows for the cap-
turing of the necessary change events to model elements
and that allows for the manipulation of traceability re-
lations from outside the tool. It is only necessary to
write an adapter for each tool that is to be connected to
our prototype. We have developed adapters to ARTi-
SAN Studio and to Sparx Enterprise Architect, as well
as a rule catalog for changes to structural UML models
developed within these tools. The main purpose of the
adapters is the generation of change events and the col-
lection of element properties to provide the rule engine
with standardized elementary change events.

The adapters are also used to allow the rule engine to
update traceability relations kept within the develop-
ment tool. Furthermore, it is possible to use the pro-
totype in heterogeneous settings of requirements and
software engineering tools. In these settings, the soft-
ware development tool is used to capture the neces-
sary change events. The directives for the necessary
traceability updates are sent to a different tool, such
as EXTESSY ToolNet [5], that holds the traceabil-
ity information. We developed an adapter to ToolNet
and use it to hold all our traceability relations even for
projects with model elements within only one tool, due
to its ability to link every element of a model.

6.2 Case study

We performed the validation in two stages using the
prototype and pre-existing analysis and design mod-
els of two systems created during an earlier experiment
(see [10]). The first analysis model was abstracted from

a wiper control system for a car, created for Volkswagen
AG, and the second was a library management system
developed by students of the Technical University of
Ilmenau. Sparx Enterprise Architect was used as the
CASE tool to create and handle the models. The anal-
ysis models for both systems were given to two develop-
ers. Developer A had four years of industrial experience
in model-based, object-oriented software development
and developer B had two years of experience. Both had
university-level education on the topic. The task was
to refine the analysis model of the system into a design
model that could be implemented. We used these two
initial analysis and four resulting design models for our
current study. Table 1 provides some statistics on the
elements of the models.

Table 1. Number of elements within models
Library system Wiper system

Anal Design Anal Design
ysis A B ysis A B

Classes 23 35 33 21 31 34
Attributes 64 67 64 35 36 35
Methods 50 50 48 28 32 29
Associations 20 39 40 18 36 39
Generalizat. 10 4 4 5 3 3
Elements 167 195 189 107 138 140

To evaluate our approach to development activity
recognition, we manually defined two scenarios (change
execution paths) to transform between each analysis-
design model pair (giving eight scenarios in all). To
explore the greatest possible variation in the changes
that would allow for the transformation, we created two
scenario types. The first reflected those change activ-
ities that would have the least impact on the model’s
structure (i.e., if it was possible to modify an element,
instead of deleting and recreating it to reach the same
structure, then that was the strategy adopted). Con-
versely, the second reflected those changes that would
have the most impact on the structure. Table 2 shows
the number of elementary changes and the number of
development activities comprising each scenario.

Table 2. Changes and development activities
Library system Wiper system
A B A B

1 2 1 2 1 2 1 2
ADD 45 84 34 62 55 98 52 87
DEL 17 56 12 40 24 67 19 54
MOD 74 52 55 38 47 32 51 34
Total 136 192 101 140 126 197 122 175
Activ. 35 49 24 37 32 46 28 41

Given the eight scenarios, and knowing the develop-
ment activities intended by the elementary changes, we
applied them to our rule engine and catalog. This was



simplified since the rule engine offers a parser that can
read scenarios of formerly captured change events from
a text file instead of having to perform all the changes
interactively within a CASE tool. This was developed
to help us improve the rules (as per Figure 4). For
this study, we used a buffer size of thirty events for the
incoming EventCache, as this had proved adequate in
previous trials. The objective was to see whether our
tool and approach identified all the change events and
intended development activities accurately (OBJ 1).

OBJ 2 was to examine the ability of our approach
to recognize development activities when developers do
not work as expected. We used the same eight scenar-
ios but applied the elementary changes five times in
random orders, with a few exceptions where structures
were built upon others and required a defined order. To
apply the change events in random order means that
the extraction of an attribute may have been started
at the beginning of the scenario and not be completed
until the end, so we used a buffer size of two-hundred
events, large enough to store the whole scenario.

6.3 Results and discussion

Since our rule catalog was evolving, we used two of
the scenarios to pre-examine the representativeness of
the rules for the study. In so doing, we made minor
adjustments to two of the rules to improve the cata-
log. Examining the results achieved when assessing the
remaining six scenarios, we found that the prototype
was able to recognize, with total accuracy, all of the
changes and intended development activities. Further,
the five different orders in which we conducted each of
the eight scenarios made no difference, as we were still
able to recognize all the expected development activi-
ties. We can say that our rules catalog was sufficient for
the context and captured the variety of ways in which
the analysis model could have been transformed by a
practitioner into the final design model. While we did
not encounter any performance problems, an exception
could be envisaged when a change triggers a large num-
ber of events (e.g., deleting a package with hundreds of
elements), but in trying such a setting we found little
appreciable delay. The relation between the size of the
model and the performance of the approach, and fur-
ther model samples, is the subject of ongoing studies.

The computational effort required to support our
approach depends more upon: (a) the number of de-
fined rules and on how many new development activi-
ties can be triggered at the same time with an incoming
change event; (b) the size of the buffer, as this deter-
mines the time interval over which the attempt to tie
incomplete activities with incoming change events will

be made; and (c) how long it takes to perform the de-
sired action when a development activity is recognized.
To address (a), the number of rules is limited and the
trigger can be defined to differentiate as much as pos-
sible. For (b), we assume that most developers will not
be able to handle more than a few development activi-
ties in parallel, so a size of thirty to fifty events should
suffice. An efficient update solution addresses (c). All
these topics are subject to ongoing investigation.

The results from this case study are preliminary and
there are threats to validity. Given a small set of mod-
els, it is possible that the changes to these models are
not representative of a wider population. Also, it might
be possible to execute the changes between both states
of the models in such a way that not all activities would
have been recognized.

7 Related work

There is related work on categorizing and identify-
ing changes to UML models. Engels et al. present a
classification of UML model refinements [4] to preserve
consistency during the evolution of UML-RT models (a
UML enhancement for real-time systems). The authors
identify three kinds of modification: creation, deletion
and update and the focus is limited to four model ele-
ments: capsules, ports, connectors and protocols. The
work does not show how these atomic changes can be
combined into the recognition of composite change ac-
tivities with development intention. Furthermore, the
approach does not appear to deal with dynamic (i.e.,
run-time) evolution of models as we do.

Shen et al. [11] suggest an extension to the UML
meta-model via specified stereotypes according to four
types of refinement. Using these stereotypes on dif-
ferent abstraction levels of a project, they are able to
check consistency between levels. The approach ex-
pects the stereotypes to be set manually by the devel-
oper. By using our approach, and maintaining trace-
ability between abstraction layers, this is not necessary.

Hnatkowska et al. [7] specify behavioral refinements
in UML collaboration diagrams and describe how these
relate to structural refinements. The purpose is to es-
tablish refinement relationships between different ab-
straction layers. The authors provide a classification
of nine simple class diagram refinements (e.g., adding
a class), so similar to elementary changes and develop-
ment activities. However, the authors do not describe
how these refinements could be detected and require
the developer to establish them manually at present.

Cleland-Huang et al. [2] present, as one aspect of
their work, the maintaining of traceability between re-
quirements after predefined changes to requirements.



There are similarities between their approach and that
proposed in this paper. The authors also capture
changes to a model (requirements) as events, their
model contains one type of element (requirement) with
properties of interest, and they identify seven possible
change activities to requirements. All these activities
consist of only one elementary change as is suitable for
requirements management tools with high-level change
functions. For changes to complex models created us-
ing UML, the recognition of change becomes more dif-
ficult, as more specifically addressed within this paper.
In [10], we focus on the problem of maintaining a set
of traceability relations in the context of evolutionary
change and limit this to post-requirements relations in
UML-driven development. That paper presents a sur-
vey of related traceability work. Within the current
paper, we focus primarily on the recognition of devel-
opment activities applied to UML models, narrowing
the scope to give us the opportunity to discuss and
describe the recognition part in the necessary depth.

8 Conclusions and future work

This paper presents an approach, supported by a
prototype tool (traceMaintainer), to tackle the recog-
nition of development activities applied to models in
the context of UML-based software development. Ac-
tivity recognition rules have been defined to cope with
the high variability in task execution and a rule engine
has been developed to apply these rules to a flow of el-
ementary change events captured from within a CASE
tool. The main motivation for identification of these
development activities is to maintain the viability of
existing traceability as a project proceeds, so as to ad-
dress the problem of traceability decay.

Though we made a conscious effort to be as exhaus-
tive as possible in terms of the rules we use to identify
possible development activities undertaken with UML
models, the approach and rule catalog will be refined
as we gain more experience, especially by applying our
rules to additional industrial case studies, thereby gain-
ing more empirical data on performance and related
factors. Our approach and tool have been validated ini-
tially through a small case study, focusing specifically
on the task of automatically recognizing those develop-
ment activities that have implications for traceability,
thus providing some demonstration of feasibility and
practicality. The early results are encouraging as it
is shown that, with the current rules, it was possible
to recognize all the development activities applied to
the models in our study, and we gained some evidence
that the rule catalog is converging. Since the defini-
tion of rules can be very challenging, and needs an

understanding of their syntax and semantics, we are
currently investigating how to perform an activity in
several different ways within the CASE tool and to use
that data to automatically create a rule (i.e., an au-
tomated rule recorder) to promote wider applicability.
We are also investigating the possibility of applying
rules in a forward and backward direction to handle
the undo function within the CASE tool whilst still
recognizing development activities.
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[3] A. Egyed, P. Grünbacher, M. Heindl, and S. Biffl.
Value-based requirements traceability: Lessons
learned. In Proc. 15th Int’l Requirements Eng. Conf.,
pages 115–118, 2007.

[4] G. Engels, R. Heckel, J. M. Küster, and L. Groenewe-
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